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Abstract

The Fourier restriction problem has a rich history, and with broad applications

including geometric measure theory, combinatorics, number theory, and PDE,

Fourier restriction has evolved into one of the most active areas of research in

modern harmonic analysis. On the other hand, Fourier decoupling is a new and

powerful tool which has led to recent breakthroughs in number theory and PDE.

We explore both Fourier restriction and decoupling, our analysis culminating in

a new proof of a classic restriction theorem based on decoupling techniques. In

addition to providing a new perspective on a classic theorem, our decoupling

method highlights insightful connections between the fields of Fourier restriction

and decoupling.
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Notation and Conventions

We will strive to explain all notation as it is introduced; however, some notation

and conventions are of such importance that we wish to implement them imme-

diately and without further comment. We record them here for reference:

If (X,X , µ) is a measure space, we say that a property holds µ-a.e, or for µ-a.e.

x ∈ X, if it holds for all x ∈ X except possibly on a set of µ-measure 0.

If 1 ≤ p <∞ and f : X → C is µ-measurable, we define

‖f‖Lp(X,µ) =
(∫

X

|f(x)|p dµ(x)
)1/p

;

for p =∞, we define

‖f‖L∞(X,µ) = ess sup
x∈X

|f(x)| = sup{c ∈ R : |f(x)| ≤ c for µ-a.e. x ∈ X}.

Given 1 ≤ p ≤ ∞, we define Lp(X,µ) to be the set of µ-measurable functions

f : X → C such that ‖f‖Lp(X,µ) <∞, modulo µ-a.e. equivalence.

The measure µ will often be clear from context, in which case we tidy our notation

by writing ‖f‖Lp(X) in place of ‖f‖Lp(X,µ) and Lp(X) in place of Lp(X,µ). A

particularly common case is when the measure space is Rn, which we always

assume to be equipped with the Lebesgue σ-algebra and the Lebesgue measure.

Consequently, on Rn, the terms a.e. and for a.e. x ∈ Rn are always assumed to

be with respect to the Lebesgue measure.

If A ⊂ Rn is measurable, we denote its Lebesgue measure by |A|, not to be

confused with the absolute value of a real or complex number; the difference

should always be clear from context. A common case is the ball of radius R > 0

centred at x ∈ Rn, which we denote by B(x,R).

Finally, if A ⊂ X is measurable, we denote by χA the characteristic function of

A, defined by

χA(x) =

1 if x ∈ X,

0 otherwise.
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Chapter 1

Introduction

First considered by Stein in 1967, the problem of Fourier restriction remains a

highly active area of contemporary research in harmonic analysis. With connec-

tions to numerous fields as disparate as combinatorics and PDE, insight into the

restriction problem is valuable not only to harmonic analysis, but to a wide range

of fields of modern research.

In contrast to the long history of Fourier restriction, the study of Fourier de-

coupling began to flourish as recently as 2015, leading to exciting breakthroughs

in number theory and new results in PDE. Our goal is to give a brief overview

of both Fourier restriction and decoupling, before demonstrating how decoupling

techniques may be used to give a new proof of a classic restriction result which

we will refer to as the Tomas restriction theorem.

We begin in Chapter 2 by reviewing the basic tools required to engage with Fourier

restriction and decoupling. Of greatest importance is the theory of Fourier anal-

ysis on Rn, and we review the standard results following a series of lecture notes

by Wolff [Wol03]. We then give a brief overview of interpolation – one of the most

useful tools in harmonic analysis, which we will have frequent need to employ.

Our treatment of this subject is drawn from a text of Stein and Weiss [SW71] and

an exposition of Tao [Tao09]. We conclude this chapter by recalling some useful

analytic inequalities, as well as some miscellaneous results mostly regarding the

surface measure dσ (Definition 2.42) associated to the truncated paraboloid in

Rn (Definition 2.40).

We dedicate Chapter 3 to an overview of Fourier restriction, beginning by sum-

marising the initial observations of Stein which mark the origins of the restriction

problem. We then introduce the equivalent dual “extension” formulation of the

restriction problem (which will become our main focus), before using the dual
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CHAPTER 1. INTRODUCTION

formulation to motivate and state the restriction conjecture for the truncated

paraboloid in Rn (Conjecture 3.13). Significant early progress on the restriction

conjecture was made by Tomas [Tom75] with the first proof the Tomas restric-

tion theorem. Since our main result in Chapter 5 is a new proof of the Tomas

restriction theorem based on decoupling methods, we provide a careful analysis

of the original methods of Tomas, drawing inspiration from an elaboration of Tao

[Tao20b]. Finally, we introduce and explore standard “local” variants of restric-

tion and extension estimates (Definitions 3.15 and 3.16) which will be essential

for the application of decoupling to the Tomas restriction theorem.

In Chapter 4, we give a similar overview of Fourier decoupling. We begin with a

brief summary of the considerations of Wolff [Wol00] which first led to the study

of decoupling inequalities, before defining the notion of a decoupling inequal-

ity itself (Equation (4.4)). We give some simple well-known examples, following

which we state the more sophisticated results of decoupling for the paraboloid

and decoupling for the moment curve (Theorems 4.5 and 4.8), due to Bourgain-

Demeter [BD15] and Bourgain-Demeter-Guth [BDG16] respectively. Decoupling

for the moment curve was famously used by Bourgain-Demeter-Guth to prove a

long-standing conjecture in number theory known as the Vinogradov main con-

jecture (or sometimes, the main conjecture of Vinogradov’s mean value theorem);

we give a short demonstration of how the main conjecture follows from decou-

pling for the moment curve, adapting an exposition of Tao [Tao15] to make a

more suitable statement of the decoupling theorem applicable. We conclude this

chapter by recounting a proof of the model n = 2 case of decoupling for the

paraboloid (Theorem 4.10), following an article of Li [Li21] and an elaboration

of Tao [Tao20a], making some small optimisations where possible.

In Chapter 5, we unite Fourier restriction and decoupling by giving a new proof of

the Tomas restriction theorem based on the decoupling theorem for the paraboloid.

We find that a local variant of the Tomas restriction theorem (Theorem 5.2) fol-

lows without too much difficulty from the decoupling theorem; the main difficulty

lies in upgrading the local extension estimates thus obtained to a suitable family

of global extension estimates. Our approach to this undertaking, known as ε-

removal, is based on that taken by Tao [Tao99] to prove a related result. Finally,

we conclude with some speculation on how similar decoupling methods could be

used to prove further restriction estimates.
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Chapter 2

Background

We will find it necessary in subsequent chapters to make frequent use of cer-

tain analytic tools which, whilst not being our main focus, are essential for us

to understand. It is assumed that the reader is already familiar with most of

these tools, but we take this opportunity to recall the most important of them

nonetheless. Our emphasis will be on stating results rather than proving them

(with some exceptions), and on summarising the relevant theory.

2.1 Fourier Analysis on Rn

We review here the basic theory of Fourier analysis on Rn. Unless indicated

otherwise, the results and definitions stated herein are drawn from the first several

chapters of [Wol03]. There are an abundance of texts on this topic, with [SS03]

and [Gra04] being just two examples from a myriad of good alternatives.

2.1.1 The L1 Fourier Transform

Definition 2.1 (The Fourier Transform). Given f ∈ L1(Rn), we define its Fourier

transform f̂ by the pointwise formula

f̂(ξ) =

∫
Rn
f(x)e−2πix·ξ dx. (2.1)

More generally, if µ is a complex measure on Rn, we define its Fourier transform

µ̂ by

µ̂(ξ) =

∫
Rn
e−2πix·ξ dµ(x). (2.2)

3



CHAPTER 2. BACKGROUND

If f ∈ L1(Rn) and µ is a measure, we refer to the supports of f̂ and µ̂ as the

Fourier supports of f and µ respectively.

Equation (2.2) indeed generalises (2.1) since for any f ∈ L1(Rn), we may

identify f with the complex measure fdx.

If we are given a function g which is the Fourier transform of a pre-existing

function and we wish to emphasise this, we informally say that g takes inputs

from the frequency domain, and we use Greek letters such as ξ and ω as the

variables. Conversely, if we are given a function f which we do not wish to think

of as the Fourier transform of a pre-existing function, we informally say that f

takes inputs from the spatial domain, and we use Latin letters such as x and y

as the variables.

We have the following basic formulas describing how the Fourier transform of

an L1 function is affected by various operations. Each of these formulas may be

proved by recalling the definitions and applying a simple change of variables.

Proposition 2.2 (Basic Fourier Transform Formulas). Let f ∈ L1(Rn), τ ∈ Rn,

and let T : Rn → Rn be an invertible linear map. Then,

1. Let fτ (x) = f(x− τ). We have f̂τ (ξ) = e−2πiτ ·ξf̂(ξ).

2. Let eτ (x) = e2πiτ ·x. We have êτf(ξ) = f̂(ξ − τ).

3. We have f̂ ◦ T = | detT |−1(f̂ ◦ T−t).

4. Let f̃(x) = f(−x). Then, ̂̃f = f̂ .

Loosely, we refer to the interplay between formulas one and two as translation

invariance. A particularly common case of the third formula is when T is scalar

multiplication by some factor r ∈ R. In particular, letting fr(x) = f(rx), we get

f̂r(ξ) = |r|−nf̂r−1 . We will tend to avoid the case n = 1, so there will be no risk

of confusing the notations fτ and fr as introduced above.

Notation 2.3 (Multiindex Notation). Fix n ≥ 2. Given α = (α1, · · · , αn), where

each αi is a nonnegative integer, we say α is a multiindex, and define its order to

be |α| = α1 + · · ·+ αn. Given f : Rn → C, we define

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαnn

,

and for any x ∈ Rn, we define

xα = xα1
1 · · ·xαnn .

4



2.1. FOURIER ANALYSIS ON RN

The next two propositions can be summarised by the general principle that

the faster f decays, the smoother f̂ should be, and conversely the smoother f is,

the faster f̂ should decay.

Proposition 2.4. If
∫
Rn |x|

N |f(x)| dx < ∞ for all N ≥ 0, then f̂ ∈ C∞(Rn),

with

Dαf̂(ξ) = ((−2πiξ)αf )̂ .

Here and throughout, we use the notation (·)̂ to denote the Fourier transform

of the expression inside the parentheses.

Proposition 2.5. If Dαf exists and is in L1(Rn) for all 0 ≤ |α| ≤ N , then

D̂αf(ξ) = (2πiξ)αf̂(ξ) ∀0 ≤ |α| ≤ N,

and there is a constant C > 0 depending on N and f such that

|f̂(ξ)| ≤ C(1 + |ξ|)−N . (2.3)

If f ∈ L1(Rn), then heuristically, f̂(ξ) measures how much the frequency e2πix·ξ

contributes to f . As such, we would like to have a Fourier inversion formula of

the form f(x) =
∫
Rn f̂(ξ)e2πix·ξ dξ for a.e. x ∈ Rn. However, a problem lies in the

fact that the Fourier transform of an L1 function is not necessarily also in L1.

To remedy this, it is convenient to introduce a certain class of functions which

behaves well under the Fourier transform.

Definition 2.6 (Schwartz Space). The Schwartz space, denoted S(Rn), is the

subspace of C∞(Rn) consisting of all functions f for which xαDβf is bounded for

all multiindices α and β.

Thus, f ∈ S(Rn) if and only if f has derivatives of rapid decrease of all orders.

Clearly, C∞c (Rn) ⊂ S(Rn), and a typical example showing this containment is

strict is the Gaussian Γ(x) = e−π|x|
2
. Using the elementary fact that there exists

some CN > 0 such that C−1
N (1 + |x|)N ≤

∑
0≤|α|≤N |xα| ≤ CN(1 + |x|)N , we

may also obtain a useful alternative characterisation of the Schwartz space as

the subspace of C∞(Rn) consisting of all functions f for which (1 + |x|)NDβf is

bounded for all N ≥ 0 and all multiindices β.

Propositions 2.4 and 2.5 lead to the following:

Theorem 2.7. If f ∈ S(Rn), then f̂ ∈ S(Rn).

Thus, the Fourier transform defines an operator S(Rn)→ S(Rn) upon restric-

tion to S(Rn). Notably, the Gaussian Γ ∈ S(Rn) as defined above is a fixed point

for this operator; that is, Γ̂ = Γ.

5



CHAPTER 2. BACKGROUND

2.1.2 The Fourier Inversion Formula

Recall that we define the convolution of two functions f, g : Rn → C by

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy =

∫
Rn
f(y)g(x− y) dy

(the two being equal by a change of variables), and note that supp(f ∗ g) ⊂
supp f + supp g. The following result is standard:

Lemma 2.8. Let φ ∈ S(Rn) with
∫
Rn φ dx = 1, and for each ε > 0, define

φε(x) = ε−nφ(ε−1x). Then,

1. If f is a continuous function which limits to zero at infinity, then φε∗f → f

uniformly as ε→ 0.

2. If f ∈ Lp(Rn) for 1 ≤ p <∞, then φε ∗ f → f in Lp(Rn) as ε→∞.

The following duality relation for the Fourier transform follows by a direct

application of Fubini’s theorem:

Lemma 2.9 (Duality Relation). If f, g ∈ L1(Rn), then∫
Rn
f̂(x)g(x) dx =

∫
Rn
f(x)ĝ(x) dx.

Combining Lemmas 2.8 and 2.9 with the observation that Γ̂ = Γ, we may

obtain the desired Fourier inversion formula under the additional assumption

that f̂ ∈ L1:

Theorem 2.10 (Fourier Inversion). If f ∈ L1(Rn) and f̂ ∈ L1(Rn), then for a.e.

x ∈ Rn,

f(x) =

∫
Rn
f̂(ξ)e2πix·ξ dξ.

Proof. For each ε > 0, define a function Iε by

Iε(x) =

∫
Rn
f̂(ξ)Γε(ξ)e

2πix·ξ dξ.

Since f̂ ∈ L1(Rn), the Lebesgue dominated convergence theorem applies, giving

lim
ε→0

Iε(x) =

∫
Rn
f̂(ξ)e2πix·ξ dξ (2.4)

6



2.1. FOURIER ANALYSIS ON RN

for all x ∈ Rn. On the other hand, Lemma 2.9 and the properties of the Fourier

transform from Proposition 2.2 give

Iε(x) =

∫
Rn
f(ξ)Γ̂ε(ξ − x) dξ =

∫
Rn
f(ξ)Γε(x− ξ) dξ

= Γε ∗ f(x),

where we have used the property Γ̂ = Γ and the observation that Γ is even.

Lemma 2.8 now gives Iε → f in L1(Rn) as ε→ 0, which together with equation

(2.4) implies the result.

In light of the Fourier inversion formula, we make the following definition:

Definition 2.11 (The Inverse Fourier Transform). Given f ∈ L1(Rn), we define

its inverse Fourier transform f̌ by the pointwise formula

f̌(x) =

∫
Rn
f(ξ)e2πix·ξ dξ.

More generally, if µ is a complex measure on Rn, we define its inverse Fourier

transform µ̌ by

µ̌(x) =

∫
Rn
e2πix·ξ dµ(ξ).

We note that for f ∈ L1(Rn), f̌(x) = f̂(−x), and similarly f̂(ξ) = f̌(−ξ).
That is, f̌ = (f̂)−1 and f̂ = (f̌)−1. Using these identities, it is clear that any

statement for the Fourier transform has a simple analogue for the inverse Fourier

transform. We will tend not to distinguish such analogues from their original

counterparts, and will simply cite the relevant result for the Fourier transform

when we wish to invoke them; a particularly common case of this will be analogues

for the inverse Fourier transform of the formulas given in Proposition 2.4. As is

the case for the Fourier transform, we will also use the notation (·)
̂

to denote

the inverse Fourier transform of the expression inside the parentheses.

Recalling that the Fourier transform of an L1 function is not necessarily itself

in L1, the terminology inverse Fourier transform is potentially misleading, since

it is does not define an inverse of the map f 7→ f̂ on L1(Rn). We use this

terminology nonetheless, though some care must be taken to avoid confusion. If

we restrict to the Schwartz space, however, and recall from Theorem 2.7 that the

Fourier transform maps S(Rn) to S(Rn) (which is clearly contained in L1(Rn)),

the Fourier inversion formula implies that the inverse Fourier transform indeed

defines an inverse of the map f 7→ f̂ on S(Rn). That is, for f ∈ S(Rn), we have

7



CHAPTER 2. BACKGROUND

ˇ̂
f = f and ˆ̌f = f (the second of these following from the first by the identities

f̌ = (f̂)−1 and f̂ = (f̌)−1). We will tend to use these properties without further

comment in subsequent chapters.

The following result regarding the interplay between convolution and the Fourier

transform will be frequently useful. To make sense of the proposition, we note

that both L1(Rn) and S(Rn) are closed under taking convolutions.

Proposition 2.12. We have

f̂ ∗ g = f̂ ĝ ∀f, g ∈ L1(Rn),

and

f̂ g = f̂ ∗ ĝ ∀f, g ∈ S(Rn).

The first of these formulas follows by a simple application of Fubini’s theorem,

and the second follows from the first by Fourier inversion. Like Fourier inversion,

we will tend to use these properties without further comment in subsequent chap-

ters.

We will find it useful in many instances to produce a function ψ ∈ S(Rn) which

is bounded away from zero on some bounded set, and whose Fourier support

is particularly small. The existence of such functions is a result that is often

used but rarely proved, so we outline in the following proposition a method for

their construction. The proof is an exercise in understanding Proposition 2.2, as

the construction is based on the simple observation that dilating a function on

the spatial domain results in a contraction on the frequency domain (with some

scaling), and conversely.

Proposition 2.13. Let U ⊂ Rn be bounded. Then, there exists ψ ∈ S(Rn) such

that |ψ| ≥ C > 0 on U , and ψ̂ is supported in B(0, 1). Moreover, ψ can be chosen

so that both ψ and ψ̂ are nonnegative.

Proof. Let ϕ ∈ C∞c (B(0, 1)) be a nonnegative, nonzero bump function supported

in B(0, 1). Then, ϕ̌ ∈ S(Rn) is such that ϕ̌(0) =
∫
Rn ϕdx > 0, so by continuity,

there exists some 0 < R < 1 and some C > 0 such that |ϕ̌| ≥ C on B(0, R).

Since U is bounded, we may choose some M ≥ 1 such that U ⊂ B(0,M), and

it follows that |ϕ̌R/M | ≥ C on U . Since (ϕ̌R/M )̂ = (M/R)nϕM/R is supported in

B(0, R/M) ⊂ B(0, 1), we may take ψ = ϕ̌R/M .

To ensure that ψ and ψ̂ are both nonnegative, we in addition ask for ϕ to be

radial and supported in B(0, 1/2). Then, using the notation from formula four

8



2.1. FOURIER ANALYSIS ON RN

of Proposition 2.2 we have ϕ̃ = ϕ, from which the formula itself gives ϕ̌ = ϕ̌.

Then, ϕ ∗ ϕ is a nonnegative, nonzero bump function supported in B(0, 1), and

Proposition 2.12 combined with our observation that ϕ̌ = ϕ̌ implies that (ϕ∗ϕ)
̂
=

ϕ̌ϕ̌ = |ϕ̌|2 is also nonnegative. Repeating our previous argument with ϕ ∗ ϕ in

place of ϕ gives the result.

2.1.3 Plancherel and Hausdorff-Young

The S(Rn)→ S(Rn) Fourier transform is particularly well-behaved with respect

to the L2(Rn) norm, as the following important theorem shows. It states that

the Fourier transform is an isometry on S(Rn) when equipped with the L2(Rn)

norm.

Theorem 2.14 (Plancherel). If f, g ∈ S(Rn), we have∫
Rn
f(x)g(x) dx =

∫
Rn
f̂(ξ)ĝ(ξ) dξ.

Proof. By Fourier inversion, we have f(x) =
ˇ̂
f(x) =

ˆ̂
f(−x). A change of variables

therefore gives∫
Rn
f(x)g(x) dx =

∫
Rn

ˆ̂
f(−x)g(x) dx =

∫
Rn

ˆ̂
f(x)g̃(x) dx,

from which the duality relation (Lemma 2.9) and formula four of Proposition 2.2

give the result.

We will most often use Plancherel when f = g, in which case the theorem

states ‖f‖L2(Rn) = ‖f̂‖L2(Rn).

Noting that S(Rn) is dense in Lp(Rn) for all 1 ≤ p < ∞ (since this is true of

C∞c (Rn) ⊂ S(Rn)), we obtain as a corollary of Plancherel that the S(Rn) →
S(Rn) may be uniquely extended to an isometry F : L2(Rn) → L2(Rn) (in fact,

F is unitary). Indeed, given f ∈ L2(Rn), choose some sequence of Schwartz

functions (fn)n∈N limiting to f in L2(Rn), and note that the sequence (f̂)n∈N is

Cauchy in L2(Rn) by Plancherel. This sequence therefore has a unique limit in

L2(Rn), which we define to be F(f). The fact that this operator is a well-defined

isometry follows by a standard argument.

Given f ∈ S(Rn), it is easy to see by the triangle inequality and the definition

of the Fourier transform that f̂ is bounded, with ‖f̂‖L∞(Rn) ≤ ‖f‖L1(Rn). Since

Plancherel gives ‖f̂‖L2(Rn) = ‖f‖L2(Rn), we see that we have ‖f̂‖Lp′ (Rn) ≤ ‖f‖Lp(Rn)

9



CHAPTER 2. BACKGROUND

in the cases p = 1 and p = 2 (recalling that for 1 ≤ p ≤ ∞, p′ is defined to be the

unique exponent 1 ≤ p′ ≤ ∞ for which 1/p+ 1/p′ = 1). This can be extended to

a family of intermediate estimates for p ∈ (1, 2):

Theorem 2.15 (Hausdorff-Young). If 1 ≤ p ≤ 2, then

‖f̂‖Lp′ (Rn) ≤ ‖f‖Lp(Rn) ∀f ∈ S(Rn). (2.5)

The idea of extending Lp1 → Lq1 and Lp2 → Lq2 bounds for an operator to

a family of bounds for intermediate p and q is known as interpolation, which we

will explore in the following section. We will see a proof of the Hausdorff-Young

theorem as a specific example.

As was the case when p = 2, we note that equation (2.5) allows us to extend

the S(Rn)→ S(Rn) Fourier transform to a bounded operator Lp(Rn)→ Lp
′
(Rn)

for any 1 ≤ p ≤ 2. This idea of converting estimates of the form (2.5) for

Schwartz functions to bounded operators between Lp spaces will contribute to

the motivation of the restriction problem in the following chapter.

2.2 Interpolation

We dedicate this section to a brief overview of one of the most useful tools in

harmonic analysis: interpolation. We fix two σ-finite measure spaces (X,X , µ)

and (Y,Y , ν) to be used throughout our discussion, noting that for our purposes,

the most relevant measure spaces will be be Rn with the Lebesgue σ-algebra and

Lebesgue measure, and discrete sets with the counting measure (and products of

such measure spaces). In what follows, the results and definitions are all drawn

from either [Tao09] or Chapter 5 of [SW71]. The subject of interpolation is vast,

and there are more advanced texts such as [BL76] dedicated to its study.

2.2.1 Strong-Type Bounds and Complex Interpolation

Let T be an operator mapping Lp(X) to measurable functions on Y . Recall that

if 1 ≤ p, q ≤ ∞ and there exists some constant C > 0 such that

‖Tf‖Lq(Y ) ≤ C‖f‖Lp(X) ∀f ∈ Lp(X), (2.6)

we say that T is bounded Lp(X) → Lq(Y ). In this case, we define the Lp → Lq

operator norm of T , denoted ‖T‖Lp→Lq , to be the least constant C such that (2.6)

holds. There is an alternative terminology that is convenient for the purposes of

interpolation:

10
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Definition 2.16. If T is bounded Lp(X)→ Lq(Y ), we say that T is of strong-type

(p, q), and refer to estimates of the form (2.6) as strong-type Lp → Lq bounds.

Given an operator T , we will often be interested in determining for which

pairs of exponents T is of strong-type (p, q). To make this easier to discuss, we

make the following definition:

Definition 2.17. The strong-type diagram of T is the set of all pairs (1/p, 1/q) ∈
[0, 1]2 for which T is of strong-type (p, q).

Note that by decomposing a function f as a sum χ{|f |≥1}f + χ{|f |<1}f , it is

clear that we have Lp(X) ⊂ Lp1(X) + Lp2(X) for all p1 ≤ p ≤ p2. It follows

that if T is defined on Lp1(X) + Lp2(X), then it is also defined on Lp(X) for all

p1 ≤ p ≤ p2. For the purposes of interpolation, operators will always be defined

on a space of the form Lp1(X) + Lp2(X).

We are now ready to state the first interpolation theorem which will be of use:

the Riesz-Thorin interpolation theorem. Perhaps the simplest interpolation the-

orem, this allows us to convert a pair of strong-type bounds for Lp1 → Lq1 and

Lp2 → Lq2 to a family of strong-type bounds for intermediate p and q, provided

the operator T is linear.

Riesz-Thorin interpolation and related theorems are broadly referred to as com-

plex interpolation in reference to the methods used to prove them, which rely

upon techniques from complex analysis such as the maximum modulus principle.

Theorem 2.18 (Riesz-Thorin Interpolation). Suppose T is a linear operator on

Lp1(X)+Lp2(X) of strong-type (p1, q1) and (p2, q2) for some 1 ≤ p1, p2, q1, q1 ≤ ∞.

Then T is of strong-type (pθ, qθ) for all 0 ≤ θ ≤ 1, where pθ and qθ are defined by

1

pθ
=

1− θ
p1

+
θ

p2

,
1

qθ
=

1− θ
q1

+
θ

q2

.

Moreover, we have ‖T‖Lpθ→Lqθ ≤ ‖T‖1−θ
Lp1→Lq1‖T‖θLp2→Lq2 for all 0 ≤ θ ≤ 1.

Remark 2.19. In the case where one of the exponents is∞, we interpret 1/∞ =

0.

We note that as θ varies from 0 to 1, (1/pθ, 1/qθ) traces a straight line from

(1/p1, 1/q1) to (1/p2, 1/q2). This is the motivation behind defining the strong-

type diagram as a set of pairs of the form (1/p, 1/q) rather than pairs of the

form (p, q); the Riesz-Thorin interpolation theorem can be summarised by the

statement that the strong-type diagram of a linear operator is convex.

11
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Example 2.20. Let T be the linear operator on L1(Rn) + L2(Rn) obtained by

extending the L1 and L2 Fourier transforms to L1+L2. Our observations from the

previous section show that T is of strong-type (1,∞) with ‖T‖L1→L∞ ≤ 1, and

of strong-type (2, 2) with ‖T‖L2→L2 = 1. Riesz-Thorin interpolation therefore

implies that T is of strong-type (pθ, qθ) for all 0 ≤ θ ≤ 1, with ‖T‖Lpθ→Lqθ ≤
‖T‖1−θ

L1→L∞‖T‖
θ
L2→L2 = 1, where

1

pθ
= (1− θ) +

θ

2
,

1

qθ
=
θ

2
.

Noting that 1
pθ

+ 1
qθ

= 1, we have qθ = p′θ, so T is of strong-type (p, p′) for all

1 ≤ p ≤ 2, with ‖T‖Lp→Lp′ ≤ 1. This is implies the Hausdorff-Young theorem

since Tf = f̂ for f ∈ S(Rn).

2.2.2 Weak-Type Bounds and Real Interpolation

We now discuss an alternative form of interpolation involving “weak” counter-

parts Lp,∞ to the “strong” Lp spaces.

Definition 2.21. Let f : X → C be measurable. We define the distribution

function of f by

λf (t) = µ({x ∈ X : |f(x)| ≥ t}) ∀t > 0.

Given any t > 0, we have

‖f‖pLp(X) =

∫
X

|f(x)|p dµ(x) ≥
∫
{x∈X:|f(x)|≥t}

tp dµ(x) = tpλf (t).

This short computation gives the well-known Chebyshev’s inequality :

Theorem 2.22 (Chebyshev’s Inequality). Given 1 ≤ p < ∞ and a measurable

function f : X → C, we have

λf (t) ≤
1

tp
‖f‖pLp(X) ∀t > 0.

This leads to the following definition:

Definition 2.23 (Weak Lp Norms). Given 1 ≤ p <∞ and a measurable function

f : X → C, we define the weak Lp norm of f by

‖f‖Lp,∞(X) = sup
t>0

tλf (t)
1/p.

For p =∞, we simply define ‖f‖L∞,∞(X) = ‖f‖L∞(X).

12
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Analogous to the definition of Lp spaces, we also make the following definition:

Definition 2.24 (Weak Lp Spaces). Given 1 ≤ p ≤ ∞, we define the weak Lp

space Lp,∞(X) to be the space of all measurable functions f : X → C such that

‖f‖Lp,∞(X) <∞ (modulo almost-everywhere equivalence).

Remark 2.25. We have L∞,∞(X) = L∞(X).

It is evident that Chebyshev’s inequality is equivalent to the statement that

‖f‖Lp,∞(X) ≤ ‖f‖Lp(X); this is the motivation behind the terminologies weak Lp

norm and weak Lp space, since we have Lp(X) ⊂ Lp,∞(X). To further contrast

the spaces Lp(X) and Lp,∞(X), we sometimes refer to the former as strong Lp

spaces.

Let T be an operator mapping Lp(X) to measurable functions on Y . In analogy

to equation (2.6), if 1 ≤ p, q ≤ ∞ and there exists some constant C > 0 such

that

‖Tf‖Lq,∞(Y ) ≤ C‖f‖Lp(X) ∀f ∈ Lp(X), (2.7)

we say that T is bounded Lp(X) → Lq,∞(Y ). As was the case for strong Lp

spaces, there is an alternative terminology that is convenient for the purposes of

interpolation:

Definition 2.26. If T is bounded Lp(X) → Lq,∞(Y ), we say that T is of weak-

type (p, q), and refer to estimates of the form (2.7) as weak-type Lp → Lq bounds.

Analogous to the definition of the strong-type diagram, we make the following

definition:

Definition 2.27. The weak-type diagram of T is the set of all pairs (1/p, 1/q) ∈
[0, 1]2 for which T is of weak-type (p, q).

Note that due to Chebyshev’s inequality, if T is of strong-type (p, q) then

it must also be of weak-type (p, q). It follows that the strong-type diagram is

contained in the weak-type diagram.

Definition 2.28. We say that the operator T is sublinear if for all f, g in the

domain of T and all c ∈ C, we have |T (f + g)(y)| ≤ |Tf(y)| + |Tg(y)| and

|T (cf)(y)| ≤ |c||Tf(y)| for ν-a.e. y ∈ Y .

Remark 2.29. Clearly, linear operators are also sublinear.

13
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We are now ready to state the second interpolation theorem which will be of

use: the Marcinkiewicz interpolation theorem. This is similar to Riesz-Thorin

interpolation, but has some advantages and disadvantages. The main advan-

tages are that Marcinkiewicz interpolation allows one to convert a pair of weak-

type bounds for Lp1 → Lq1 and Lp2 → Lq2 to a family of strong-type bounds

for intermediate p and q, provided the operator T is sublinear. The main dis-

advantages are that Marcinkiewicz interpolation requires further restrictions on

the exponents pi and qi (namely, we need q1 6= q2 and pi ≤ qi for i = 1, 2);

moreover, Marcinkiewicz interpolation does not give the nice strong-type bounds

‖T‖Lpθ→Lqθ ≤ ‖T‖1−θ
Lp1→Lq1‖T‖θLp2→Lq2 as was the case with Riesz-Thorin interpo-

lation.

Marcinkiewicz interpolation and related theorems are broadly referred to as real

interpolation in reference to the methods used to prove them, which rely on tech-

niques from real analysis.

Theorem 2.30 (Marcinkiewicz Interpolation). Suppose T is a sublinear operator

on Lp1(X)+Lp2(X) of weak-type (p1, q1) and (p2, q2) for some exponents 1 ≤ p1 ≤
q1 ≤ ∞, 1 ≤ p2 ≤ q2 ≤ ∞, where q1 6= q2. Then T is of strong-type (pθ, qθ) for

all 0 < θ < 1, where pθ and qθ are defined by

1

pθ
=

1− θ
p1

+
θ

p2

,
1

qθ
=

1− θ
q1

+
θ

q2

.

The Marcinkiewicz interpolation theorem can be summarised by the statement

that the weak-type diagram of a sublinear operator is convex, and moreover, the

the interior of the weak-type diagram is contained in the strong-type diagram.

2.3 Some Useful Inequalities

We now briefly review some inequalities that will be of use. As before, we let

(X,X , µ) and (Y,Y , ν) be σ-finite measure spaces, and given an exponent 1 ≤
p ≤ ∞, we let p′ denote the unique exponent 1 ≤ p′ ≤ ∞ for which 1/p+1/p′ = 1.

The first is one of the most-well known inequalities in analysis, though we include

it for the sake of completeness:

Theorem 2.31 (Hölder’s Inequality). Let 1 ≤ p ≤ ∞. If f ∈ Lp(X) and

g ∈ Lp′(X), we have ∫
X

|fg| dµ ≤ ‖f‖Lp(X)‖g‖Lq(X).

14
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The next inequality, not quite as well-known as Hölder’s inequality, is useful

for estimating the Lp norm of a function on X given by integrating a function on

X × Y with respect to the Y variable.

Theorem 2.32 (Minkowski’s Integral Inequality). Let 1 ≤ p < ∞, and let

F : X × Y → C be measurable. Then,(∫
X

∣∣∣ ∫
Y

F (x, y) dν(y)
∣∣∣p dµ(x)

)1/p

≤
∫
Y

(∫
X

|F (x, y)|p dµ(x)
)1/p

dν(y).

Remark 2.33. Minkowski’s integral inequality also holds with standard modifi-

cations when p =∞.

The following well-known inequality describes when the convolution of two

functions f ∈ Lp(Rn) and g ∈ Lq(Rn) lies in some other Lr(Rn):

Theorem 2.34 (Young’s Convolution Inequality). Let 1 ≤ p, q ≤ ∞ satisfy

1 ≤ 1/p + 1/q ≤ 2, and let 1 ≤ r ≤ ∞ be such that 1 + 1/r = 1/p + 1/q. If

f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn) with

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn)‖g‖Lq(Rn).

Young’s convolution inequality can be proved by elementary means, but a far

simpler proof is afforded to us by interpolation. Fixing g ∈ Lq(Rn), Minkowski’s

integral inequality gives the bound ‖f ∗g‖Lq(Rn) ≤ ‖f‖L1(Rn)‖g‖Lq(Rn), and the tri-

angle inequality followed by Hölder’s inequality yields the bound ‖f ∗ g‖L∞(Rn) ≤
‖f‖Lq′ (Rn)‖g‖Lq(Rn). Considering the linear operator T defined by Tf = f ∗ g,

we see that T is of strong-type (1, q) and (q′,∞) with operator norm at most

‖g‖Lq(Rn) in both cases. Applying Riesz-Thorin interpolation yields Young’s con-

volution inequality in full generality.

As a special case of Theorem 2.6 of [O’N63], Young’s convolution inequality re-

mains true if each norm is replaced by its weak counterpart.

The final inequality which will be of use is Schur’s test, which gives a bound on

the L2 → L2 operator norm of an integral operator based on its integral kernel.

Theorem 2.35 (Schur’s Test). Let T be an integral operator with kernel K :

X × Y → C; that is,

Tf(x) =

∫
Y

K(x, y)f(y) dν(y).

Then,

‖T‖2
L2→L2 ≤ sup

x∈X

(∫
Y

|K(x, y)| dν(y)
)
· sup
y∈Y

(∫
X

|K(x, y)| dµ(x)
)
.
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Remark 2.36. Schur’s test is actually more general; we have stated it in the

specific form that we will need later.

Finally, we highlight some important notation related to inequalities:

Notation 2.37. If two quantities X and Y satisfy |X| ≤ CY for some con-

stant C > 0 depending on some finite number of parameters p1, · · · , pn, we write

X .p1,··· ,pn Y or equivalently X = Op1,··· ,pn(Y ), and call C the implied constant.

We allow the implied constant to change each line when using this notation.

We understand Y &p1,··· ,pn X to mean X .p1,··· ,pn Y , and we write X ∼p1,··· ,pn Y
if Y .p1,··· ,pn X .p1,··· ,pn Y .

If we are treating a certain parameter as fixed during a given argument, we

will tend not to record the dependence of implicit constants on that parameter.

For example, we will often treat the dimension n as fixed, and thus we do not tend

to emphasise the dependence of implicit constants on n. Otherwise, the omission

of a non-fixed parameter from the above notations should be understood to mean

that the implied constants do not depend on that parameter.

Example 2.38. Equation (2.3) could be more concisely written as

|f̂(ξ)| .N,f (1 + |ξ|)−N .

The parameter ξ is not considered fixed, so its omission from the notation .N,f

is understood to mean that the implied constant is independent of ξ. Though the

implied constant depends on the function f , if we were treating f as fixed for the

purposes of a given argument, we would simply write |f̂(ξ)| .N (1 + |ξ|)−N .

2.4 Miscellaneous Results

We record here some results that will be of use but which do not fit into any of

the previous sections.

Theorem 2.39 (Partitions of Unity). Let U = (Uα)α∈A be a collection of open

sets in Rn indexed by some set A. Then, there exists a smooth partition of unity

subordinate to U , which is a family (ηα)α∈A of smooth functions ηα :
⋃
α∈A Uα → R

such that

1. 0 ≤ ηα ≤ 1 for all α ∈ A.

2. supp ηα ⊂ Uα for all α ∈ A.
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3. Each x ∈
⋃
α∈A Uα lies in supp ηα for only finitely many α ∈ A.

4.
∑

α∈A ηα(x) = 1 for all x ∈
⋃
α∈A Uα (noting that the sum has finitely many

nonzero terms for each x in light of the previous property).

We will have frequent need to consider submanifolds of Rn, which we assume

without further qualification to be smooth and compact. In fact, for the sake of

concreteness, we will primarily consider the truncated paraboloid in Rn. To avoid

trivialities, we henceforth assume n ≥ 2 throughout.

Definition 2.40. The truncated paraboloid in Rn is the hypersurface

P n−1 := {(ξ′, ξn) ∈ Rn : ξn = |ξ′|2 ; ξ′ ∈ [−1, 1]n−1}.

Remark 2.41. As indicated by the use of the Greek letter ξ in the above defi-

nition, we will tend to think of submanifolds as being situated in the frequency

domain.

For the sake of brevity, we will simply refer to the truncated paraboloid as

defined above as the paraboloid, though care should be taken not to confuse this

with its non-truncated counterpart, {(ξ′, ξn) ∈ Rn : ξn = |ξ′|2 ; ξ′ ∈ Rn−1}.
Note that the paraboloid admits a global parametrisation φ : [−1, 1]n−1 → P n−1

defined by φ(ξ′) = (ξ′, |ξ′|2). Using this, we may define the surface measure dσ

on P n−1, motivated by considerations from Riemannian geometry:

Definition 2.42 (Surface Measure for the Paraboloid). Define h : [−1, 1]n−1 → R
by h(ξ′) =

√
(detDφTDφ)(ξ′). Given a function g : P n−1 → C, we define∫

Pn−1

g(ξ) dσ(ξ) =

∫
[−1,1]n−1

(g ◦ φ)(ξ′)h(ξ′) dξ′ =

∫
[−1,1]n−1

g(ξ′, |ξ′|2)h(ξ′) dξ′.

Remark 2.43. We have h ∼ 1 on [−1, 1]n−1.

A standard differential geometry computation shows that the foregoing def-

inition is independent of the parametrisation φ. Leveraging this fact, a similar

definition can be made for an arbitrary submanifold (if the submanifold does not

admit a global parametrisation, one uses a more general version of a partition of

unity to “stitch together” local definitions of dσ).

The next result, based on the theory of oscillatory integrals and stationary phase,

gives a bound on the decay of the Fourier transform d̂σ:

Theorem 2.44. Let n ≥ 2, and let dσ be the surface measure on P n−1. Then,

|d̂σ(ξ)| . (1 + |ξ|)−(n−1)/2.
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Remark 2.45. Theorem 2.44 remains true if dσ is replaced by the complex

measure fdσ for any f ∈ C∞(S); moreover, if ξ is in a direction normal to P n−1

at some point, then we have the stronger result d̂σ(ξ) ∼ (1 + |ξ|)−(n−1)/2.

There will be several instances in which we would like to estimate the surface

measure of a ball in Rn. The following lemma provides a simple bound:

Lemma 2.46. For all ω ∈ Rn and all R > 0, we have

σ(B(ω,R)) . Rn−1.

Proof. We have

σ(B(ω,R)) =

∫
Pn−1

χB(ω,R)(ξ) dσ(ξ),

so by definition of the surface measure, we have

σ(B(ω,R)) =

∫
[−1,1]n−1

χB(ω,R)(ξ
′, |ξ′|2)h(ξ′) dξ′

.
∫

[−1,1]n−1

χB(ω,R)(ξ
′, |ξ′|) dξ′, (2.8)

where we have used our observation from Remark 2.43. Clearly, χB(ω,R)(ξ
′, |ξ′|)

is supported in the projection of B(ω,R) onto Rn−1 ∼= {ξ ∈ Rn : ξn = 0}, which

is a ball of radius R in Rn−1. This has (n − 1)-dimensional Lebesgue measure

∼ Rn−1, from which (2.8) gives σ(B(ω,R)) . Rn−1.

Finally, we recall a useful covering lemma:

Lemma 2.47 (Vitali Covering Lemma). Let {B(xα, Rα) : α ∈ A} be a collection

of balls in Rn indexed by some set A. If supα∈ARα < ∞, then there exists a

countable subset B ⊂ A such that the balls {B(xβ, Rβ) : β ∈ B} are pairwise

disjoint and satisfy ⋃
α∈A

B(xα, Rα) ⊂
⋃
β∈B

B(xβ, 5Rβ).
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Chapter 3

Fourier Restriction and

Extension

The study of Fourier restriction was initiated by Stein in the 1960’s, and with

applications as broad as geometric measure theory, combinatorics, number the-

ory, and PDE, Fourier restriction remains a highly active field of contemporary

research. In this chapter, we aim to give a brief overview of some key aspects of

the field.

We begin by summarising the observations of Stein which led to the advent of

the restriction problem, before introducing the dual “extension” formulation of

the problem which will become our main focus. We then state the restriction

conjecture for the truncated paraboloid, motivated by certain necessary condi-

tions, following which we recount an early breakthrough of Tomas [Tom75] on the

restriction conjecture, a new proof of which will be our main result in Chapter 5.

Finally, we introduce and explore a “local” variant of restriction and extension

estimates which will play an important role in the aforementioned proof.

3.1 Initial Considerations

When f ∈ L1(Rn), the Fourier transform f̂ is defined pointwise by the formula

(2.1), and its restriction to an arbitrary subset of Rn is therefore well-defined.

However, as was observed in Section 2.1, when f ∈ Lp(Rn) for p ∈ (1, 2], f̂

is an element of Lp
′
(Rn) and is therefore only defined up to almost-everywhere

equivalence. In particular, f̂ may take arbitrary values on a set of measure

zero, which is to say that its restriction to a set of measure zero is not a priori

well-defined. Despite this, it was observed by Stein in 1967 that for certain
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submanifolds S ⊂ Rn of appropriate curvature and for certain exponents p ∈
(1, 2], we may meaningfully restrict the Fourier transform of a function f ∈
Lp(Rn) to S, up to dσ-a.e. equivalence. Stein was driven by the observation that

it is the Hausdorff-Young estimate ‖f̂‖p′ . ‖f‖p which allows us to extend the

S(Rn)→ S(Rn) Fourier transform to a bounded operator Lp(Rn)→ Lp
′
(Rn), and

therefore allows us to define f̂ up to a.e. equivalence on Rn when f ∈ Lp(Rn).

Analogously, an estimate of the form

‖f̂ |S‖Lq(S, dσ) . ‖f‖Lp(Rn) ∀f ∈ S(Rn) (3.1)

would allow us, after an appropriate approximation argument, to realise f̂ |S as an

element of Lq(S, dσ) for any f ∈ Lp(Rn), so that f̂ could be uniquely restricted

to S up to dσ-a.e. equivalence. Loosely, we refer to estimates of the form (3.1)

as restriction estimates.

Remark 3.1. We will tend to write ‖f̂‖Lq(S, dσ) in place of ‖f̂ |S‖Lq(S, dσ), since

the restriction to S is implicit in the Lq(S, dσ) norm.

Restriction estimates are so important that they are worthy of their own

notation:

Definition 3.2. Given a submanifold S and a pair of exponents 1 ≤ p, q ≤ ∞,

we denote by RS(p→ q) the statement that equation (3.1) holds.

Broadly speaking, the goal of Fourier restriction is to determine, for a given

submanifold S (or family of submanifolds), for which pairs of exponents the re-

striction estimate RS(p→ q) holds.

We record in the next few lemmas some standard elementary observations about

restriction estimates for later reference.

Lemma 3.3. RS(1→∞) holds for any submanifold S.

Proof. By the triangle inequality and the definition of the Fourier transform, we

have ‖f̂‖L∞(S, dσ) ≤ ‖f‖L1(Rn) for all f ∈ S(Rn).

Due to its simplicity, we will sometimes refer to RS(1 → ∞) as the trivial

estimate. As we will later see, the trivial estimate is often useful for the purposes

of interpolation; by combining the trivial estimate with some other non-trivial

restriction estimate RS(p → q), we may obtain a family of “intermediate” re-

striction estimates for a range of exponents p and q.
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Lemma 3.4. Given a submanifold S and a pair of exponents 1 ≤ p, q ≤ ∞,

RS(p→ q) implies RS(p→ r) for all 1 ≤ r < q.

Proof. Since S is compact by assumption, the dσ measure of S is finite. Hölder’s

inequality with exponent q/r > 1 therefore gives that for any f ∈ S(Rn),∫
S

|f̂(ξ)|r dσ(ξ) ≤ σ(S)1−r/q
(∫

S

|f̂(ξ)|q dσ(ξ)
)r/q

.

Raising both sides to the power of 1/r, we find that

‖f̂‖Lr(S, dσ) . ‖f̂‖Lq(S, dσ) . ‖f‖Lp(Rn),

where the second inequality follows by RS(p→ q).

An analogous result is also true for the first exponent:

Lemma 3.5. Given a submanifold S and a pair of exponents 1 ≤ p, q ≤ ∞,

RS(p→ q) implies RS(r → q) for all 1 ≤ r < p.

Proof. Since S is compact by assumption, we may extend the function ϕ ≡ 1 on

S to a function ϕ ∈ C∞c (Rn). Defining ψ ∈ S(Rn) by ψ = ϕ̌, we have ψ̂ ≡ 1 on

S by Fourier inversion, hence f̂ |S = (f̂ ψ̂)|S = (f ∗ ψ)̂ |S. It follows that

‖f̂‖Lq(S, dσ) = ‖(f ∗ ψ)̂ ‖Lq(S, dσ) . ‖f ∗ ψ‖Lp(Rn) . ‖f‖Lr(Rn),

where the first inequality follows by RS(p→ q) and the second follows by Young’s

convolution inequality.

We note that in light of Lemmas 3.4 and 3.5, the general goal is to prove

restriction estimates for the largest possible exponents

3.2 The Dual Formulation

Given a submanifold S ⊂ Rn, define an operator RS on S(Rn) by RSf = f̂ |S (not

to be confused with the RS appearing in the notation RS(p→ q)).

Definition 3.6. We call RS the restriction operator associated to S.

Clearly, RS(p → q) is equivalent to the statement that RS can be extended

to a bounded operator Lp(Rn) → Lq(S, dσ). When expressed in the language

of operators, it becomes evident that there should be a dual statement that is
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equivalent to RS(p → q), and this is indeed the case. To discover the dual

statement, let f ∈ S(Rn) and g ∈ L1(S, dσ) be given. Fubini’s theorem gives∫
S

RSf(ξ)g(ξ) dσ(ξ) =

∫
S

(∫
Rn
f(x)e−2πix·ξ dx

)
g(ξ) dσ(ξ)

=

∫
Rn
f(x)(g dσ)

̂
(x) dx.

Letting ES be the operator acting on L1(S, dσ) by ESg = (g dσ) ,̂ the above can

be summarised by the formula∫
S

RSf(ξ)g(ξ) dσ(ξ) =

∫
Rn
f(x)ESg(x) dx. (3.2)

Definition 3.7. We call ES the extension operator associated to S.

Formally, equation (3.2) can be interpreted to mean that the extension oper-

ator is the adjoint of the restriction operator.

Alternative to equation (3.1), one might consider whether we have an estimate

of the form

‖ESg‖Lp′ (Rn) . ‖g‖Lq′ (S, dσ) ∀g ∈ Lq′(S, dσ) (3.3)

(noting that Lq
′
(S, dσ) ⊂ L1(S, dσ) by a similar application of Hölder’s inequality

as in Lemma 3.4). Loosely, we refer to estimates of this form as extension esti-

mates. Such estimates are also important enough to deserve their own notation:

Definition 3.8. Given a submanifold S and a pair of exponents 1 ≤ p′, q′ ≤ ∞,

we denote by R∗S(q′ → p′) the statement that equation (3.3) holds.

As one might expect, the statements RS(p → q) and R∗S(q′ → p′) are in fact

equivalent.

Theorem 3.9. Given a submanifold S and a pair of exponents 1 ≤ p, q ≤ ∞,

the statements RS(p→ q) and R∗S(q′ → p′) are equivalent (with the same implied

constants).

Proof. Suppose ‖RSf‖Lq(S, dσ) ≤ A‖f‖Lp(Rn) for all f ∈ S(Rn), and let g ∈
Lq
′
(S, dσ). A standard duality formula gives

‖ESg‖Lp′ (Rn) = sup
{∣∣∣ ∫

Rn
f(x)ESg(x) dx

∣∣∣ : f ∈ S(Rn), ‖f‖Lp(Rn) = 1
}

= sup
{∣∣∣ ∫

S

RSf(ξ)g(ξ) dσ(ξ)
∣∣∣ : f ∈ S(Rn), ‖f‖Lp(Rn) = 1

}
, (3.4)
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where the second line follows by (3.2). But for any f ∈ S(Rn) such that

‖f‖Lp(Rn) = 1, the hypothesis ‖RSf‖Lq(S, dσ) ≤ A‖f‖Lp(Rn) and Hölder’s inequality

give ∣∣∣ ∫
S

RSf(ξ)g(ξ) dσ(ξ)
∣∣∣ ≤ A‖g‖Lq′ (S, dσ).

The supremum in Equation (3.4) is therefore at most A‖g‖Lq′ (S, dσ), so we have

‖ESg‖Lp′ (Rn) ≤ A‖g‖Lq′ (S dσ) for all g ∈ Lq′(S, dσ).

The converse follows by a similar argument, using the duality formula

‖RSf‖Lq(S, dσ) = sup
{∣∣∣ ∫

S

RSf(ξ)g(ξ) dσ(ξ)
∣∣∣ : g ∈ Lq′(S, dσ), ‖g‖Lq′ (S, dσ) = 1

}
.

In light of Theorem 3.9, it is clear that we lose no generality by focusing only

on estimates of the form R∗S(q′ → p′). Indeed, despite the origins of the restric-

tion problem lying in the non-dual formulation, there has been a trend in the

literature to favour the dual formulation. We adopt this approach, henceforth

focusing mainly on estimates of the form R∗S(q′ → p′) (with some exceptions).

As such, we will drop the use of dual exponents for such estimates, and simply

write them in the form R∗S(p → q). One advantage of this approach is that the

dual formulation can be used more readily to establish necessary conditions for

restriction or extension estimates to hold, as we will see in the following section.

We will also see later that extension operators and estimates are intimately con-

nected to the study of PDE.

In addition to focusing on extension estimates, we will henceforth adopt the con-

vention of using variants of g to denote functions on Rn, preserving variants of f

to denote functions on a submanifold (reversing an implicit convention held prior

to this point). We also note that we will tend to blur the distinction between

restriction and extension estimates, the two being equivalent.

We pause momentarily to record the dual counterparts of our elementary obser-

vations in Lemmas 3.3, 3.4, and 3.5:

Lemma 3.10. R∗S(1→∞) holds for any submanifold S.

Lemma 3.11. Given a submanifold S and a pair of exponents 1 ≤ p, q ≤ ∞,

R∗S(p→ q) implies R∗S(r → q) for all r > p.

Lemma 3.12. Given a submanifold S and a pair of exponents 1 ≤ p, q ≤ ∞,

R∗S(p→ q) implies R∗S(p→ r) for all r > q.

23



CHAPTER 3. FOURIER RESTRICTION AND EXTENSION

Each of these follows by a direct application of Theorem 3.9 and the corre-

sponding restriction lemma. Alternatively, elementary proofs of these results can

be given along the same lines as their restriction counterparts.

We note that in light of Lemmas 3.11 and 3.12, the general goal is to prove

extension estimates for the smallest possible exponents

3.3 Necessary Conditions and the Restriction

Conjecture

For a given submanifold S, it is natural to ask for which pairs of exponents (p, q)

R∗S(p→ q) holds. The answer depends on the submanifold S, with characteristics

such as curvature and dimension being important. We will limit our attention to

compact hypersurfaces, which is to say compact submanifolds of Rn of dimension

n−1. In fact, as mentioned in Section 2.4, we will primarily consider the truncated

paraboloid P n−1 in Rn, though most of our results may be readily generalised to

any compact hypersurface with positive definite second fundamental form.

Since we are focusing our attention on a particular submanifold for each n,

we will sometimes tidy our notation by omitting the subscript from the operator

EPn−1 . Thus, we understand all instances of the operator E to mean EPn−1 for

whatever dimension n is implicitly fixed in the given argument.

Recall that for f ∈ Lp(S, dσ), Ef = (fdσ)
̂

is just the inverse Fourier transform

of the surface-supported measure fdσ. We can therefore use our understanding

of the asymptotics of the Fourier transforms of such measures from Section 2.4

to derive necessary conditions for extension estimates to hold. Indeed, suppose

R∗Pn−1(p → q) holds for some 1 ≤ p, q ≤ ∞, and consider the function f ≡ 1

on P n−1. Then, Ef = (dσ)
̂
, so R∗Pn−1(p → q) dictates that ‖(dσ)

̂
‖Lq(Rn) .

‖1‖Lp(Pn−1, dσ) = O(1). But by Remark 2.45, (dσ)
̂

decays asymptotically like

(1 + |x|)−n−1
2 in directions normal to P n−1, from which we see by integrating in

polar coordinates that ‖(dσ)
̂
‖Lq(Rn) can only be finite if q n−1

2
> n. It follows

that for R∗Pn−1(p→ q) to hold, we must have

q >
2n

n− 1
. (3.5)

We may establish further necessary conditions on the exponents p and q by consid-

ering the scalings (ξ′, ξn) 7→ (λξ′, λ2ξn) for λ ≥ 1. Indeed, let f ∈ Lp(P n−1, dσ),

and extend f to an Lp function f̃ on the non-truncated paraboloid by defin-

ing f̃(ξ) = 0 for ξ /∈ P n−1. Given λ ≥ 1, define Tλ : Rn → Rn by T (ξ′, ξn) =
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(λξ′, λ2ξn), and define fλ ∈ Lp(P n−1, dσ) by fλ = f̃ ◦Tλ (noting that Tλ preserves

the paraboloid). R∗Pn−1(p→ q) gives

‖Efλ‖Lq(Rn) . ‖fλ‖Lp(Pn−1, dσ), (3.6)

but a change of variables reveals that

‖fλ‖Lp(Pn−1, dσ) ∼ λ−
n−1
p ‖f‖Lp(Pn−1, dσ), (3.7)

and another change of variables gives Efλ(x) = λ−(n−1)(Ef)λ
−1

(x). Hence,

‖Efλ‖Lq(Rn) = λ−(n−1)‖(Ef)λ
−1‖Lq(Rn)

= λ−(n−1)+n+1
q ‖Ef‖Lq(Rn). (3.8)

Combining equations (3.6), (3.7) and (3.8), we see that for all λ ≥ 1,

λ−(n−1)+n+1
q ‖Ef‖Lq(Rn) . λ−

n−1
p ‖f‖Lp(Pn−1, dσ),

hence

‖Ef‖Lq(Rn) . λ
n−1
p′ −

n+1
q ‖f‖Lp(Pn−1, dσ). (3.9)

If n−1
p′
− n+1

q
< 0, then by letting λ → ∞ in (3.9), we find that Ef = 0 for all

f ∈ Lp(P n−1, dσ). But this is a contradiction, giving the additional necessary

condition

n+ 1

q
≤ n− 1

p′
. (3.10)

We note that there is an alternative derivation of the necessary condition (3.10)

along similar lines to that of (3.5) which is applicable to other submanifolds;

the idea is to let fR be a “smoothed out” version of the characteristic func-

tion of a small cap of radius R, and consider the behaviour of ‖EfR‖Lq(Rn) and

‖fR‖Lp(Pn−1, dσ) as R → 0. This is known as the Knapp example, originally pub-

lished by Strichartz [Str77]; an accessible heuristic explanation can be found in

[Tao04].

The famous restriction conjecture (in the case of the paraboloid) simply states

that the necessary conditions (3.5) and (3.10) on the exponents p and q are also

sufficient:

Conjecture 3.13 (The Restriction Conjecture). R∗Pn−1(p→ q) holds if and only

if the conditions (3.5) and (3.10) are satisfied.
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This conjecture can be easily visualised using the strong-type diagram for the

extension operator EPn−1 , as shown in the following figure:

1/q

1/p
(1, 0):

Trivial Estimate

(1
2
, n−1

2(n+1)
): Tomas-Stein

(n−1
2n
, n−1

2n
)n−1

2n

Figure 3.1: The conjectured strong-type diagram for EPn−1 .

The restriction conjecture states that EPn−1 is of strong-type (p, q) for all (1
p
, 1
q
)

lying inside the convex trapezoidal region. This is the intersection of the region

0 ≤ 1
p
, 1
q
≤ 1 (corresponding to the fact that 1 ≤ p, q ≤ ∞) with the regions 1

q
<

n−1
2n

and n+1
q
≤ n−1

p′
(corresponding to the necessary conditions (3.5) and (3.10)

respectively). Thus, the trapezoidal region is bounded above by the line 1
q

= n−1
2n

,

and on the diagonal by the line n+1
q

= n−1
p′

(or equivalently, 1
q

= n−1
n+1

(1− 1
p
)). The

latter of these is known as the critical line, since proving the conjecture along this

line would imply the conjecture in full. Indeed, Lemma 3.11 states that if the

conjecture is known at some point in the above region, then it is automatically

true for all points to the left and on the same horizontal line (we note that Lemma

3.10, on the other hand, simply states that the conjecture is already known at the

point (1, 0), as marked in the figure). Moreover, by interpolation, if the conjecture

is known for two pairs of exponents (p1, q1) and (p2, q2), then it is also true for all

pairs of exponents (p, q) for which (1
p
, 1
q
) lies on the straight line joining ( 1

p1
, 1
q1

)

and ( 1
p2
, 1
q2

). It follows by Lemma 3.11 and interpolation with the trivial estimate

that if the conjecture is known at some point ( 1
p1
, 1
q1

) on the critical line, then it

must also be true for all points ( 1
p2
, 1
q2

) in the trapezoidal region with 1
q2
≤ 1

q1
. As
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such, progress on the restriction conjecture is measured by how close one can get

on the critical line to the endpoint (n−1
2n
, n−1

2n
).

The restriction conjecture was resolved in full for the case n = 2 by Zygmund

[Zyg74], but remains open in all other dimensions. The first major development

in higher dimensions was made by Tomas [Tom75], by proving the conjecture

along the line 1
p

= 1
2

up to but not including the endpoint (1
2
, n−1

2(n+1)
) for all

n ≥ 2, a statement which we will call the Tomas restriction theorem. This was

soon strengthened by Stein to include the endpoint, and we therefore refer to

the estimate R∗Pn−1(2 → 2(n+1)
n−1

) as the Tomas-Stein estimate, with 2(n+1)
n−1

being

referred to as the Tomas-Stein exponent. Our main result in Chapter 5 will be a

new proof of the Tomas restriction theorem, so we dedicate the next section to a

careful analysis of the original methods of Tomas, as well as some applications of

the Tomas-Stein estimate to PDE.

The restriction conjecture remains a very active field of research, with the best

results to date given in the recent paper [HZ20].

3.4 The Tomas Restriction Theorem

A significant early development on the restriction conjecture was made by Tomas

[Tom75], with a proof that R∗Sn−1(2 → q) holds for all q > 2(n+1)
n−1

. In fact,

Tomas proved the equivalent restriction statement that RSn−1(p → 2) holds for

all 1 ≤ p < 2(n+1)
n+3

. Tomas’ proof utilised the decay of the Fourier transform of the

surface measure of Sn−1, and as such, generalises easily to other hypersurfaces

including P n−1. In keeping with our focus on the paraboloid, we present here an

elaboration of Tomas’ original proof, adapted to the paraboloid. Some inspiration

has been drawn from an exposition of Tao [Tao20b].

Theorem 3.14 (The Tomas Restriction Theorem). RPn−1(p → 2) holds for all

1 ≤ p < 2(n+1)
n+3

.

Proof. Let 1 ≤ p < 2(n+1)
n+3

. We must show that

∫
Pn−1

|ĝ(ξ)|2 dσ(ξ) . ‖g‖2
Lp(Rn)

for all g ∈ S(Rn). Using the identity |ĝ(ξ)|2 = ĝ(ξ)ĝ(ξ) and Fubini’s theorem, we
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find that∫
Pn−1

|ĝ(ξ)|2 dσ(ξ) =

∫
Pn−1

(∫
Rn
g(x)e−2πix·ξ dx

)(∫
Rn
g(y)e2πiy·ξ dx

)
dσ(ξ)

=

∫
Rn
g(x)(g ∗ (dσ)

̂
)(x) dx.

By Hölder’s inequality, it follows that∫
Pn−1

|ĝ(ξ)|2 dσ(ξ) ≤ ‖g‖Lp(Rn)‖g ∗ (dσ)
̂
‖Lp′ (Rn),

and it therefore suffices to prove

‖g ∗ (dσ)
̂
‖Lp′ (Rn) . ‖g‖Lp(Rn).

We use a variant of a standard technique from harmonic analysis known as dyadic

decomposition: fix some ϕ ∈ C∞c (Rn) with compact support in B(0, 1) such that

ϕ ≡ 1 on B(0, 1/2), and define ψ(x) = ϕ(x) − ϕ(2x) so that ψ ∈ C∞c (Rn) is

supported in the annulus B(0, 1) \ B(0, 1/4). By a telescoping series argument,

we then have

1 = ϕ(x) +
∞∑
k=1

ψ(x/2k),

so we may write

(dσ)
̂
(x) = ϕ(x)(dσ)

̂
(x) +

∞∑
k=1

ψ(x/2k)(dσ)
̂
(x).

The triangle inequality then gives

‖g ∗ (dσ)
̂
‖Lp′ (Rn) ≤ ‖g ∗ ϕ(dσ)

̂
‖Lp′ (Rn) +

∞∑
k=1

‖g ∗ ψ(·/2k)(dσ)
̂
‖Lp′ (Rn),

so it suffices to prove the estimates

‖g ∗ ϕ(dσ)
̂
‖Lp′ (Rn) . ‖g‖Lp(Rn) (3.11)

and

‖g ∗ ψ(·/2k)(dσ)
̂
‖Lp′ (Rn) . 2−ck‖g‖Lp(Rn) ∀k ≥ 1, (3.12)

for some constant c > 0 independent of k and g.

To prove (3.11), we note that p < 2 implies p′ > 2, hence p′/2 > 1. Letting

r = p′/2, we then have 1 + 1
p′

= 1
p

+ 1
r
, so Young’s convolution inequality gives

‖g ∗ ϕ(dσ)
̂
‖Lp′ (Rn) . ‖g‖Lp(Rn)‖ϕ(dσ)

̂
‖Lr(Rn).
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This is (3.11) since ϕ(dσ)
̂

is compactly supported, hence ‖ϕ(dσ)
̂
‖Lr(Rn) is finite.

To prove (3.12), define for each integer k ≥ 1 an operator Tk mapping functions

on Rn to functions on Rn by Tkg = g ∗ ψ(·/2k)(dσ)
̂
. Then, equation (3.12) is

equivalent to a strong-type (p, p′) bound for Tk for all k ≥ 1, with ‖Tk‖Lp→Lp′ =

O(2−ck). We will establish this by interpolating between strong-type (1,∞) and

(2, 2) bounds for Tk.

Fix some k ≥ 1. For the strong-type (1,∞) estimate, we use Young’s convolution

inequality to find

‖g ∗ ψ(·/2k)(dσ)
̂
‖L∞(Rn) . ‖g‖L1(Rn)‖ψ(·/2k)(dσ)

̂
‖L∞(Rn)

. 2−
k(n−1)

2 ‖g‖L1(Rn), (3.13)

where the last inequality follows since ψ(·/2k) . 1 is supported on the annulus

B(0, 2k) \B(0, 2k−2), on which (dσ)
̂
. 2−

k(n−1)
2 by Theorem 2.44.

For the strong-type (2, 2) estimate, we use Plancherel’s theorem to obtain

‖g ∗ ψ(·/2k)(dσ)
̂
‖L2(Rn) = ‖ĝ(ψ(·/2k)(dσ)

̂
)̂ ‖L2(Rn)

≤ ‖g‖L2(Rn)‖(ψ(·/2k)(dσ)
̂
)̂ ‖L∞(Rn), (3.14)

so we must estimate the Fourier transform (ψ(·/2k)(dσ)
̂
)̂ . Fixing some ξ ∈ Rn,

Fubini’s theorem gives

(ψ(·/2k)(dσ)
̂
)̂ (ξ) =

∫
Rn
ψ(x/2k)

(∫
Pn−1

e2πix·ω dσ(ω)
)
e−2πix·ξ dx

=

∫
Pn−1

(∫
Rn
ψ(x/2k)e−2πix·(ξ−ω) dx

)
dσ(ω)

=

∫
Pn−1

ψ̂2−k(ξ − ω) dσ(ω), (3.15)

so by Proposition 2.2, we have

(ψ(·/2k)(dσ)
̂
)̂ (ξ) = 2kn

∫
Pn−1

ψ̂(2k(ξ − ω)) dσ(ω).

Hence, by the triangle inequality and the rapid decay of the Schwartz function

ψ̂, we have

|(ψ(·/2k)(dσ)
̂
)̂ (ξ)| . 2kn

∫
Pn−1

(1 + 2k|ξ − ω|)−100n dσ(ω). (3.16)

We now use yet another variant of dyadic decomposition: letting Aj = B(ξ, 2j−k)\
B(ξ, 2j−k−1) for all integers j ≥ 1, observe that we may express Rn as the disjoint
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union

Rn = B(ξ, 2−k) ∪
∞⋃
j=1

Aj.

We may therefore decompose the right-hand side of equation (3.16) using the

Lebesgue monotone convergence theorem to obtain

|(ψ(·/2k)(dσ)
̂
)̂ (ξ)| . 2kn

(∫
Pn−1∩B(ξ,2−k)

(1 + 2k|ξ − ω|)−100n dσ(ω)

+
∞∑
j=1

∫
Pn−1∩Aj

(1 + 2k|ξ − ω|)−100n dσ(ω)
)

= 2kn(I + II). (3.17)

To estimate I, we note that the integrand is at most 1 and Lemma 2.46 gives

σ(B(ξ, 2−k)) . 2−k(n−1), from which we see I . 2−k(n−1). To estimate II, we

observe that for ω ∈ Aj, we have |ξ − ω| ≥ 2j−k−1, and it follows that (1 +

2k|ξ − ω|)−100n ≤ (2j−1)−100n . 2−100jn. Since Aj ⊂ B(0, 2j−k), we also have

σ(Aj) ≤ σ(B(0, 2j−k)) . 2(j−k)(n−1). It follows that we also have

II .
∞∑
j=1

2−100jn+(j−k)(n−1)

= 2−k(n−1)

∞∑
j=1

2−(99n+1)j . 2−k(n−1).

Equation (3.17) therefore gives ‖(ψ(·/2k)(dσ)
̂
)̂ ‖L∞(Rn) . 2k, so equation (3.14)

gives

‖g ∗ ψ(·/2k)(dσ)
̂
‖L2(Rn) . 2k‖g‖L2(Rn) (3.18)

Interpolating between the strong-type bounds (3.13) and (3.18) for the operator

Tk using Riesz-Thorin interpolation, we find that for all 0 ≤ θ ≤ 1, Tk is of

strong-type (pθ, qθ) with

‖Tk‖Lpθ→Lqθ ≤ ‖Tk‖1−θ
L1→L∞‖Tk‖

θ
L2→L2

. 2−k
(n−1)

2
(1−θ)+kθ,

where 1
pθ

= 1− θ
2

and 1
qθ

= θ
2
. Setting θ = 2

p′
(noting that 0 < 2

p′
< 1 since p < 2,

implying p′ > 2), we obtain

‖T‖Lp→Lp′ . 2
−2k(1+n−1

2
)( n−1

2(n+1)
− 1
p′ ).

This proves (3.12) with c = 2(1 + n−1
2

)( n−1
2(n+1)

− 1
p′

), where c > 0 since 1 ≤ p <
2(n+1)
n+3

implies p′ > 2(n+1)
n−1

.
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By using a more delicate interpolation method, Stein was able to extend the

Tomas restriction theorem to the endpoint, proving the Tomas-Stein estimate

RPn−1(2(n+1)
n+3

→ 2), or equivalently, R∗Pn−1(2 → 2(n+1)
n−1

). One approach to this

estimate, different to the original method of Stein, is given in [Tao20b].

Some connections between PDE and extension estimates can be seen by consid-

ering the Schrödinger equation 2πi∂xnu = ∆x′u on Rn−1× [0,∞) with initial data

u(x′, 0) = g(x′). By a standard argument in which one converts the PDE into

a family of ODE by taking the Fourier transform with respect to the x′ variable

and using Proposition 2.5, one obtains that a solution is given by

u(x′, xn) =

∫
Rn−1

ĝ(ξ′)e2πi(x′,xn)·(ξ′,|ξ′|2) dξ′. (3.19)

In particular, if ĝ ∈ C∞c ([−1, 1]n−1), equation (3.19) gives that u(x′, xn) =

(EPn−1G)(x′, xn), where we define G : P n−1 → C by G(ξ′, |ξ′|2) = ĝ(ξ′)/h(ξ′)

for h as defined in Definition 2.42. The Tomas-Stein estimate R∗Pn−1(2→ 2(n+1)
n−1

)

therefore gives

‖u‖
L

2(n+1)
n−1 (Rn)

. ‖G‖L2(Pn−1, dσ)

. ‖g‖L2(Rn−1),

where we have used Plancherel and the fact that h ∼ 1 on [−1, 1]n−1. Similar

estimates may be derived for general g ∈ S(Rn−1) by proving the Tomas-Stein

estimate for the non-truncated paraboloid.

3.5 Local Restriction and Extension Estimates

Let S ⊂ Rn be a submanifold. We now introduce “local” variants of the state-

ments RS(p→ q) and R∗S(p→ q):

Definition 3.15. Let ε > 0. If for all R ≥ 1 and all g ∈ S(Rn) supported in

B(0, R) we have

‖ĝ‖Lq(S, dσ) . Rε‖g‖Lp(B(0,R)), (3.20)

we say that RS(p→ q ; ε) holds.

Loosely, we refer to estimates of the form (3.20) as local restriction estimates.

Definition 3.16. Let ε > 0. If for all R ≥ 1 and all f ∈ Lq′(S, dσ) we have

‖ESf‖Lp′ (B(0,R)) . Rε‖f‖Lq′ (S, dσ), (3.21)

we say that R∗S(q′ → p′ ; ε) holds.
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Loosely, we refer to estimates of the form (3.21) as local extension estimates.

We note that by translation invariance, estimate (3.21) is equivalent to the same

estimate in which the Lp
′
norm is taken over any ball B(x,R) of radius R. Indeed,

given any x ∈ Rn, an analogue of Proposition 2.2 gives (ESf)−x = ES(exf). It

follows that if estimate (3.21) holds, then for all f ∈ Lq′(S, dσ), we have

‖ESf‖Lp′ (B(x,R)) = ‖(ESf)−x‖Lp′ (B(0,R))

. Rε‖exf‖Lq′ (S, dσ)

= Rε‖f‖Lq′ (S, dσ).

Analogously, estimate (3.20) is equivalent to the same estimate in which g is sup-

ported in any ball B(x,R) of radius R, and where the Lp norm is taken over the

same ball.

Without further qualification, we understand the terms restriction estimates and

extension estimates to refer to those of the form (3.1) and (3.3) respectively; when

referring to estimates of the form (3.20) and (3.21), we will always include the

description local. On the other hand, when we wish to emphasise that we are not

referring to local restriction or extension estimates, we will refer to estimates of

the form (3.1) and (3.3) as global restriction and extension estimates respectively.

It is not hard to see by an analogous argument to Theorem 3.9 that RS(p→ q ; ε)

and R∗S(q′ → p′ ; ε) are equivalent. We therefore lose no generality by focusing

on local extension estimates, and as such, we will adopt the same convention for

local estimates as we do for global estimates; namely, we will tend to focus on

local extension estimates, which we will write without dual exponents in the form

R∗S(p→ q ; ε).

Clearly, R∗S(p → q ; ε) implies R∗S(p → q ; ε′) for all ε′ > ε. Moreover, it is easy

to see that R∗S(p → q) implies R∗S(p → q ; ε) for all ε > 0. The utility of local

estimates lies in the question of whether the converse, or a partial converse, of

this statement holds. In particular, if we knew that R∗S(p → q ; ε) for all ε > 0

implied R∗S(p→ q), then we could use local extension estimates to prove a corre-

sponding global extension estimate. Unfortunately, the converse as stated here is

not true in general, but under some circumstances something almost as good is

true: knowing R∗S(p → q ; ε) for some ε > 0 implies a global extension estimate

where the ε loss is transferred to one or both of the exponents p, q. That is, it can

be shown under some circumstances that R∗S(p → q ; ε) implies R∗S(pε → qε) for

some pε ≥ p and qε ≥ q. In particular, we would like to have pε → p and qε → q

as ε → 0, in which case knowing R∗S(p → q ; ε) for all ε > 0 implies a family of

global extension estimates having R∗S(p → q) as one of its endpoints. This will
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be our approach to proving the Tomas restriction theorem in Chapter 5 based

on the decoupling methods introduced in Chapter 4; decoupling will provide a

relatively short proof of the local extension estimates R∗Pn−1(2 → 2(n+1)
n−1

; ε) for

all ε > 0, after which we must prove a concrete ε-removal theorem allowing us

to deduce the Tomas restriction theorem based on this family of local extension

estimates.

We now prove a well-known equivalent condition for R∗S(p → q ; ε) to hold.

Heuristically, the idea is that upon localising to scale R on the spatial side in

equation (3.21),we may safely “blur” to scale R−1 on the frequency side (this

heuristic is motivated by a general principle in Fourier analysis known as the

uncertainty principle). This result holds for more general compact submanifolds,

but we will once again adhere to the case of the paraboloid P n−1 for the sake

of concreteness. In what follows, given δ > 0, we let Nδ(P n−1) denote the δ-

neighbourhood of P n−1; that is,

Nδ(P n−1) = {ξ ∈ Rn : |ξ − ω| < δ for some ω ∈ P n−1}.

We divide the necessary and sufficient conditions into two separate propositions:

Proposition 3.17. Let 1 ≤ p, q ≤ ∞, let ε > 0, and suppose that for all R ≥ 1

and all g ∈ S(Rn) with Fourier support in NR−1(P n−1), we have ‖g‖Lq(B(0,R)) .

Rε−1/p′‖ĝ‖Lp(Rn). Then, R∗Pn−1(p→ q ; ε) holds.

Proof. Let f ∈ Lp(P n−1, dσ) and choose by Proposition 2.13 some ψ ∈ S(Rn)

such that ψ ∼ 1 on B(0, 1), and ψ̂ is nonnegative and supported in B(0, 1).

Given R ≥ 1, we have

‖Ef‖Lq(B(0,R)) =
(∫

B(0,R)

|Ef(x)|q dx
)1/q

∼
(∫

B(0,R)

|ψ(x/R)Ef(x)|q dx
)1/q

= ‖ψR−1Ef‖Lq(B(0,R)). (3.22)

Now, applying Fubini’s theorem as in the derivation of equation (3.15) gives

(ψR−1Ef )̂ (ξ) =

∫
Pn−1

ψ̂R−1(ξ − ω)f(ω) dσ(ω); (3.23)

we therefore say that (ψR−1Ef )̂ = ψ̂R−1 ∗(fdσ) – a statement which can be made

precise using the theory of distributions. Using the result regarding the support

of a convolution and the fact that ψR−1 has Fourier support in B(0, R−1), we see
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that (ψR−1Ef )̂ is supported in P n−1 + B(0, R−1) = NR−1(P n−1) (alternatively,

this can be shown by an elementary argument). Since ψR−1Ef is also Schwartz,

the hypothesis gives

‖ψR−1Ef‖Lq(B(0,R)) . Rε−1/p′‖(ψR−1Ef )̂ ‖Lp(Rn).

By equation (3.22), we see that it therefore suffices to prove

‖(ψR−1Ef )̂ ‖Lp(Rn) . R1/p′‖f‖Lp(Pn−1, dσ).

To do so, we write ψ̂R−1 = Rnψ̂R in equation (3.23), and apply Hölder’s inequality

with the splitting

ψ̂R(ξ − ω)f(ω) = ψ̂R(ξ − ω)1/p′+1/pf(ω)

to obtain

|(ψR−1Ef )̂ (ξ)| ≤ Rn
(∫

Pn−1

|ψ̂R(ξ − ω)| dσ(ω)
)1/p′

(∫
Pn−1

|ψ̂R(ξ − ω)||f(ω)|p dσ(ω)
)1/p

. (3.24)

Noting that∫
Pn−1

|ψ̂R(ξ − ω)| dσ(ω) ≤ ‖ψ̂‖L∞(Rn)

∫
Pn−1

χξ−supp ψ̂R
(ω) dσ(ω)

= ‖ψ̂‖L∞(Rn)

∫
Pn−1

χB(ξ,R−1)(ω) dσ(ω)

. R−(n−1)

(by Lemma 2.46), equation (3.24) gives that for all ξ ∈ Rn,

|(ψR−1Ef )̂ (ξ)| . Rn−(n−1)/p′
(∫

Pn−1

|ψ̂R(ξ − ω)||f(ω)|p dσ(ω)
)1/p

.

We therefore have

‖(ψR−1Ef )̂ ‖Lp(Rn) . Rn−(n−1)/p′
(∫

Rn

(∫
Pn−1

|ψ̂R(ξ − ω)||f(ω)|p dσ(ω)
)
dξ
)1/p

,

so upon applying Fubini’s theorem and observing that
∫
Rn |ψ̂R(ξ)| dξ ∼ R−n, we

find that

‖(ψR−1Ef )̂ ‖Lp(Rn) . Rn−(n−1)/p′−n/p‖f‖Lp(Pn−1, dσ)

= R1/p′‖f‖Lp(Pn−1, dσ). (3.25)
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The converse is as follows:

Proposition 3.18. Let 1 ≤ p, q ≤ ∞, let ε > 0, and suppose that R∗Pn−1(p →
q ; ε) holds. Then, for all R ≥ 1 and all g ∈ S(Rn) with Fourier support in

NR−1(P n−1), we have ‖g‖Lq(B(0,R)) . Rε−1/p′‖ĝ‖Lp(Rn).

Proof. Let R ≥ 1, and let g ∈ S(Rn) have Fourier support in NR−1(P n−1). Fix

some constant C > 0, and for each δ > 0 define

Ñδ(P n−1) := {ξ = (ξ′, ξn) ∈ Rn : ξ′ ∈ [−(1 + δ), 1 + δ]n−1 ; |ξn − |ξ′|2| ≤ Cδ}.

It is clear that by choosing C large enough, we can ensure Nδ(P n−1) ⊂ Ñδ(P n−1)

for all δ > 0. It follows by Fourier inversion that for all x ∈ Rn, we have

g(x) =

∫
ÑR−1

ĝ(ξ)e2πix·ξ dξ.

Define a map Φ : [−1, 1]n−1 × [−CR−1, CR−1]→ ÑR−1 by

Φ(ω′, ωn) = ((1 +R−1)ω′, |(1 +R−1)ω′|2 + ωn),

and define a linear map T : Rn → Rn by T (x′, xn) = ((1 +R−1)x′, (1 +R−1)2xn).

Since 1 +R−1 ∼ 1 for R ≥ 1, we have

| detDΦ(ω)| = (1 +R−1)n−1 ∼ 1

for all ω ∈ [−1, 1]n−1 × [−CR−1, CR−1]. It follows by a change of variables and

Fubini’s theorem that

|g(x)| ∼
∣∣∣ ∫ CR−1

−CR−1

(∫
[−1,1]n−1

ĝ(Φ(ω′, ωn))e2πix·(Φ(ω′,ωn)) dω′
)
dωn

∣∣∣
≤
∫ CR−1

−CR−1

∣∣∣ ∫
[−1,1]n−1

ĝ(Φ(ω′, ωn))e2πi(Tx)·(ω′,|ω′|2) dω′
∣∣∣ dωn. (3.26)

For each ωn ∈ [−CR−1, CR−1], define a function fωn : P n−1 → C by

fωn(ω′, |ω′|2) =
ĝ(Φ(ω′, ωn))

h(ω′)
∀ω′ ∈ [−1, 1]n−1,

where h is as defined in Definition 2.42. Equation (3.26) then gives

|g(x)| .
∫ CR−1

−CR−1

∣∣∣ ∫
Pn−1

fωn(ξ)e2πi(Tx)·ξ dξ
∣∣∣ dωn

=

∫ CR−1

−CR−1

|Efωn(Tx)| dωn,
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so upon applying Minkowski’s integral inequality, we get

‖g‖Lq(B(0,R)) .
∫ CR−1

−CR−1

(∫
B(0,R)

|Efωn(Tx)|q dx
)1/q

dωn

.
∫ CR−1

−CR−1

(∫
T (B(0,R))

|Efωn(x)|q dx
)1/q

dωn, (3.27)

where we have applied a change of variables on the second line, again using the

fact that 1+R−1 ∼ 1. Now, it is clear from the definition of T that T (B(0, R)) ⊂
B(0, R(1 +R−1)2) ⊂ B(0, 4R). Hence, the hypothesis R∗Pn−1(p→ q ; ε) gives(∫

T (B(0,R))

|Efωn(x)|q dx
)1/q

≤ ‖Efωn‖Lq(B(0,4R))

. Rε‖fωn‖Lp(Pn−1, dσ).

Substituting this into equation (3.27) and using Hölder’s inequality, we get

‖g‖Lq(B(0,R)) . Rε

∫ CR−1

−CR−1

‖fωn‖Lp(Pn−1, dσ) dωn

. Rε−1/p′
(∫ CR−1

−CR−1

‖fωn‖
p
Lp(Pn−1, dσ) dωn

)1/p

. (3.28)

Now, we have

‖fωn‖
p
Lp(Pn−1, dσ) ∼

∫
[−1,1]n−1

|ĝ(Φ(ω′, ωn))|p dω′,

hence,(∫ CR−1

−CR−1

‖fωn‖
p
Lp(Pn−1, dσ) dωn

)1/p

∼
(∫ CR−1

−CR−1

(∫
[−1,1]n−1

|ĝ(Φ(ω′, ωn))|p dω′
)
dωn

)1/p

∼
(∫
ÑR−1

|ĝ(ξ)|p dξ
)1/p

= ‖ĝ‖Lp(Rn),

where the last line follows by undoing the change of variables which led to equation

(3.26). Inserting this into equation (3.28) gives the result.
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Chapter 4

Fourier Decoupling

The local smoothing conjecture for the wave equation, first stated in [Sog91], is a

well-known conjecture from PDE which seeks to bound the Lp(Rn × [1, 2]) norm

of solutions to the wave equation in n + 1 dimensions by Sobolev norms of the

initial data. It is well-known that the conjecture would follow from a certain

square function estimate of the form∥∥∥∑
j∈I

fj

∥∥∥
Lp(Rn+1)

.ε |I|ε
∥∥∥(∑

j∈I

|fj|2
)1/2∥∥∥

Lp(Rn+1)
, (4.1)

where ε > 0. When working on the local smoothing conjecture, Wolff [Wol00]

was compelled to consider a weaker form of the estimate (4.1) in which the roles

of the `2 norm and Lp norm on the right-hand side were interchanged:∥∥∥∑
j∈I

fj

∥∥∥
Lp(Rn+1)

.ε |I|ε
(∑
j∈I

‖fj‖2
Lp(Rn+1)

)1/2

(4.2)

(in fact, Wolff considered a slightly different estimate with an `p norm on the

right-hand side). Initially named in honor of Wolff, estimates of the form (4.2)

are now known as decoupling inequalities.

The study of decoupling inequalities has recently flourished, and the implications

have been far-reaching. In this chapter, we give a brief overview of some of the de-

velopments, beginning with some motivation and elementary examples. We then

state some of the landmark results, namely decoupling for the paraboloid [BD15]

and decoupling for the moment curve [BDG16], before seeing how decoupling for

the moment curve was used to resolve a long-standing conjecture from number

theory known as the Vinogradov main conjecture. Finally, we demonstrate a

proof of the model two-dimensional case of decoupling for the paraboloid.
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4.1 Motivation and Simple Examples

Let (X,X , µ) be a measure space, and let 1 ≤ p ≤ ∞. Given a finite collection

of functions {fj}j∈I ⊂ Lp(X), the triangle inequality followed by the Cauchy-

Schwarz inequality gives the bound∥∥∥∑
j∈I

fj

∥∥∥
Lp(X)

≤ |I|1/2
(∑
j∈I

‖fj‖2
Lp(X)

)1/2

. (4.3)

However, it is clear that under some circumstances, this trivial bound can be

improved upon.

Example 4.1. Consider the case when the measure space is Rn with the Lebesgue

measure, p = 2, and the functions fj are pairwise orthogonal. Then, equation

(4.3) holds without the factor of |I|1/2, and we say that the functions fj ex-

hibit square-root cancellation. Thus, by Plancherel’s theorem, the functions fj

having pairwise disjoint Fourier supports is sufficient to guarantee square-root

cancellation

Example 4.2. Adhering to the case p = 2, a similar setting in which it is possible

to improve upon equation (4.3) is when the Fourier supports of fj, rather than

being disjoint, have bounded overlap. That is to say, when there exists some

C > 0 such that every ξ ∈ Rn lies in at most C of the sets supp fj. In this case,

the Cauchy-Schwarz inequality implies the pointwise bound∣∣∣∑
j∈I

f̂j

∣∣∣2 ≤ C
∑
j∈I

|f̂j|2.

Upon integrating and taking square roots, we have∥∥∥∑
j∈I

fj

∥∥∥
L2(Rn)

≤ C1/2
(∑
j∈I

‖fj‖2
L2(Rn)

)1/2

,

which is an improvement upon (4.3) as long as C < |I|.

Examples 4.1 and 4.2 are specific case of a more general type of inequality

known as a decoupling inequality. Informally, we say that a collection of functions

{fj}j∈I exhibits `2 decoupling in Lp if∥∥∥∑
j∈I

fj

∥∥∥
Lp(X)

.ε |I|ε
(∑
j∈I

‖fj‖2
Lp(X)

)1/2

(4.4)
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for all ε > 0. The `2 refers to the occurrence of the `2 norm of the sequence

(‖fj‖Lp(X))j∈I on the right-hand side of equation (4.4), and we could similarly

consider analogous `q decoupling inequalities for other exponents q (though we

will have no need to do so). The name “decoupling” itself is due to the fact that

the functions fj can be thought of as being “coupled” on the left-hand side of

(4.4) into the sum
∑

j∈I fj, but they have been “decoupled” on the right-hand

side into individual components. This terminology is most clearly motivated by

examples in which the fj are complex exponentials of different frequencies. Such

functions are so common in this field that we are compelled to give them a more

convenient notation:

Notation 4.3. We define e(x) = e2πix for all x ∈ R.

One typical example is the following (given, for example, in [Pie19]):

Example 4.4. For each N ∈ N and ε > 0, we have the decoupling inequality

∥∥∥ N∑
j=1

e(j2x)
∥∥∥
L4([0,1])

.ε N
ε
( N∑
j=1

‖e(j2x)‖2
L4([0,1])

)1/2

.

Indeed, the right-hand side is equal to N ε+1/2, and for the left-hand side, we see

that

∥∥∥ N∑
j=1

e(j2x)
∥∥∥4

L4([0,1])
=

∫ 1

0

∣∣∣ N∑
j=1

e(j2x)
∣∣∣4 dx

=
∑

1≤j1,j2,j3,j4≤N

∫ 1

0

e((j2
1 + j2

2 − j2
3 − j2

4)x) dx.

Now, recall that an integral of the form
∫ 1

0
e(kx) dx for k ∈ Z is equal to 1 if

k = 0 and is equal to 0 otherwise. It follows that

∥∥∥ N∑
j=1

e(j2x)
∥∥∥4

L4([0,1])
= #{1 ≤ j1, j2, j3, j4 ≤ N : j2

1 + j2
2 = j2

3 + j2
4},

and number-theoretic considerations show that the right-hand side is .ε N
2+ε

for all ε > 0; indeed, there are N2 ways to choose j2 and j4, and for each choice,

there are .ε N
ε solutions to the diophantine equation j2

1 − j2
3 = j2

4 − j2
2 in the

variables j1 and j3 [Tao08]. Taking fourth roots gives the result.
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This example is a good illustration of an important technique connecting

number theory and analysis. This technique exploits the simple identity

∫
[0,1]n

e(k · x) dx =

1 if k = 0,

0 if k ∈ Zn \ {0}

to see that estimating Lp([0, 1]n) norms of exponential sums (when p is an even

integer) is equivalent to estimating the number of solutions to a corresponding

system of n diophantine equations. In Example 4.4, we saw that an a priori

estimate on the number of solutions to the diophantine equation j2
1 + j2

2 = j2
3 + j2

4

for 1 ≤ j1, · · · , j4 ≤ N led to an `2 decoupling inequality in L4([0, 1]) for the

complex exponentials {e(j2x)}j∈N. Of more interest is the converse situation,

in which an a priori decoupling inequality provides the means to estimate the

number of solutions to a diophantine system. We will see later a powerful example

of how a decoupling inequality was used to prove a long-standing conjecture of

Vinogradov on the number of solutions to diophantine systems of a particular

form.

4.2 Some Landmark Results

One situation in which decoupling has been found to hold is when a collection of

Schwartz functions {fj}j∈I have Fourier supports in regions of moderate separa-

tion adapted to a submanifold of appropriate curvature. Two notable examples

of appropriate submanifolds are the paraboloid and the moment curve. We take

this opportunity to state these landmark results.

4.2.1 The Paraboloid

For each 0 < δ ≤ 1 and each ξ ∈ Rn−1, let Pξ,δ ⊂ Rn denote the region

Pξ,δ = {(ξ′, ξn) : ξ′ ∈ ξ + (−δ, δ)n−1 ; |ξn − |ξ|2 − 2ξ · (ξ′ − ξ)| < δ2}.

This can be thought of as the tangent hyperplane to the paraboloid at (ξ, |ξ|2),

thickened to scale δ2 in the ξn direction and lying above a cube of scale δ about

ξ. To aid with the visualisation of the regions Pξ,δ, the following diagram depicts

one such region in the case n = 2:
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ξ′

ξn

(ξ, |ξ|2)

ξ

Figure 4.1: One of the regions Pξ,δ visualised when n = 2, in which case they are

narrow parallelograms “tangent” to the parabola.

The landmark result for the paraboloid, due to Bourgain and Demeter, is as

follows:

Theorem 4.5 (Decoupling for the Paraboloid: Theorem 1.1, [BD15]). Let 0 <

δ ≤ 1, and let Σ ⊂ [−1, 1]n−1 be δ-separated. If for each ξ ∈ Σ, fξ ∈ S(Rn) has

Fourier support in Pξ,δ, then∥∥∥∑
ξ∈Σ

fξ

∥∥∥
L

2(n+1)
n−1 (Rn)

.ε δ
−ε
(∑
ξ∈Σ

‖fξ‖2

L
2(n+1)
n−1 (Rn)

)1/2

for all ε > 0.

Remark 4.6. The decoupling exponent 2(n+1)
n−1

afforded to us by Theorem 4.5 is

the same as the Tomas-Stein exponent. This is the primary fact we will exploit

to give a new proof of the Tomas restriction theorem based on decoupling in

Chapter 5.

We note that the decoupling theorem for the paraboloid remains true if we

replace the regions Pξ,δ by the vertically scaled regions

P̃ξ,δ = {(ξ′, ξn) : ξ′ ∈ ξ + (−δ, δ)n−1 ; |ξn − |ξ|2 − 2ξ · (ξ′ − ξ)| < C2δ2}

for some fixed C ≥ 1. Indeed, let Σ ⊂ [−1, 1]n−1 be δ-separated, and let fξ ∈
S(Rn) have Fourier support in P̃ξ,δ for all ξ ∈ Σ. Observe that P̃ξ,δ ⊂ Pξ,Cδ for
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all ξ ∈ Σ, so each fξ has Fourier support in Pξ,Cδ; moreover, we may partition Σ

into O(1) Cδ-separated subsets Σ1, · · · ,Σm. The triangle inequality followed by

the decoupling theorem therefore gives∥∥∥∑
ξ∈Σ

fξ

∥∥∥
L

2(n+1)
n−1 (Rn)

≤
m∑
j=1

∥∥∥∑
ξ∈Σj

fξ

∥∥∥
L

2(n+1)
n−1 (Rn)

.ε δ
−ε

m∑
j=1

(∑
ξ∈Σj

‖fξ‖2

L
2(n+1)
n−1 (Rn)

)1/2

for all ε > 0. Applying the Cauchy-Schwarz inequality on the last line and

absorbing m1/2 = O(1) into the implied constant gives∥∥∥∑
ξ∈Σ

fξ

∥∥∥
L

2(n+1)
n−1 (Rn)

.ε δ
−ε
(∑
ξ∈Σ

‖fξ‖2

L
2(n+1)
n−1 (Rn)

)1/2

.

4.2.2 The Moment Curve

For each n ≥ 2, define γn : [0, 1]→ Rn by γn(t) = (t, t2, · · · , tn).

Definition 4.7. The moment curve in Rn is the curve Γn = γn([0, 1]). That is,

Γn := {(t, t2, · · · , tn) : t ∈ [0, 1]}.

For each 0 < δ ≤ 1 and each ξ ∈ R, let θξ,δ denote the region

θξ,δ = {γn(ξ) + s1γ
′
n(ξ) + · · ·+ snγ

(n)
n (ξ) : |sk| < δk for all k = 1, · · · , n},

where γ
(k)
n denotes the kth derivative of γn. Thus, θξ,δ is a box of dimensions ∼ δ×

δ2×· · ·×δn centred at γn(ξ), with sides running parallel to γ′n(ξ), γ′′n(ξ), · · · , γ(n)
n (ξ)

respectively.

The landmark result for the moment curve, due to Bourgain, Demeter, and Guth,

is as follows:

Theorem 4.8 (Decoupling for the Moment Curve: Theorem 1.2, [BDG16]; The-

orem 1.2, [GLY21]). Let 0 < δ ≤ 1, and let Σ ⊂ [0, 1] be δ-separated. If for each

ξ ∈ Σ, fξ ∈ S(Rn) has Fourier support in θξ,δ, then∥∥∥∑
ξ∈Σ

fξ

∥∥∥
Ln(n+1)(Rn)

.ε δ
−ε
(∑
ξ∈Σ

‖fξ‖2
Ln(n+1)(Rn)

)1/2

for all ε > 0.

Theorem 4.8 was famously used by Bourgain, Demeter and Guth [BDG16]

to prove a long-standing conjecture in number theory known as the Vinogradov

main conjecture; we explore this application in the following section.

42



4.3. THE VINOGRADOV MAIN CONJECTURE

4.3 The Vinogradov Main Conjecture

Given integers s, n,N ≥ 1, let Js,n(N) denote the number of integral solutions to

the system of diophantine equations

xj1 + · · ·+ xjs = xjs+1 + · · ·+ xj2s for all 1 ≤ j ≤ n, (4.5)

with 1 ≤ xi ≤ N for all i = 1, · · · , 2s. There are N s choices for x1, · · · , xs,
so by taking xs+k = xk for all 1 ≤ k ≤ s, we see that there are at least N s

solutions to the system (4.5) (these are the so-called “diagonal solutions”). On

the other hand, there are N2s choices for x1, · · · , x2s, and given one choice, one

may heuristically consider xj1 + · · · + xjs and xjs+1 + · · · + xj2s as random integers

in the range [1, sN j]. The probability that these are equal are equal would then

be 1/sN j, so the probability that we have equality for each j = 1, · · · , n would

be
∏n

j=1 1/sN j ∼s,n N−
n(n+1)

2 . This heuristic, plus the existence of the diagonal

solutions, leads to the following conjecture:

Conjecture 4.9 (The Vinogradov Main Conjecture). For all s, n ≥ 1 and all

ε > 0, we have

Js,n(N) .s,n,ε N
ε(N s +N2s−n(n+1)

2 ).

It is not hard to see that

Js,n(N) =

∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣2s dx,

so the conjecture is equivalent to the statement∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣2s dx .s,n,ε N

ε(N s +N2s−n(n+1)
2 ) (4.6)

for all ε > 0. Heuristically, the Fourier transform of e(γn(j) · x) should be sup-

ported at the point γn(j) (an idea which can be made precise by the theory

of distributions), from which it is evident that the decoupling theorem for the

moment curve might be applicable. This is indeed the case, as was first shown

in [BDG16]. We recount a variant of the argument here, inspired by an expo-

sition of Tao [Tao15]. Tao cites a different version of the decoupling theorem

for the moment curve, so some extra steps must be taken to make Theorem 4.8

applicable.
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Proof (The Vinogradov Main Conjecture): We begin with some standard reduc-

tions. The first is that it suffices to prove (4.6) for the decoupling exponent

2s = n(n+ 1). Indeed, suppose it is known that∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣n(n+1)

dx .n,ε N
n(n+1)

2
+ε. (4.7)

Then, given any s > n(n+1)
2

, we may write 2s = n(n+ 1) + η and use the triangle

inequality to obtain∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣2s dx ≤ Nη

∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣n(n+1)

dx

.n,ε N
n(n+1)

2
+η+ε = N2s−n(n+1)

2
+ε.

Hence, (4.6) holds in this case. On the other hand, if s < n(n+1)
2

, we apply

Hölder’s inequality with exponent p = n(n+1)
2s

> 1 to obtain

∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣2s dx ≤ (∫

[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣n(n+1)

dx
) 2s
n(n+1)

.n,ε N
s+ε,

so that (4.6) also holds.

To prove (4.7) using Theorem 4.8, we must first change variables so that the fre-

quencies lie on the arc of the moment curve corresponding to the unit interval. In

particular, letting TN : Rn → Rn be the map TN(x1, · · · , xn) = (Nx1, · · · , Nnxn),

we see that∫
[0,1]n

∣∣∣ N∑
j=1

e(γn(j) · x)
∣∣∣n(n+1)

dx = N−
n(n+1)

2

∫
[0,N ]×···×[0,Nn]

∣∣∣ N∑
j=1

e(γn(j) · T−1
N x)

∣∣∣n(n+1)

dx

= N−
n(n+1)

2

∫
[0,N ]×···×[0,Nn]

∣∣∣ N∑
j=1

e(γn(j/N) · x)
∣∣∣n(n+1)

dx.

We now note that [0, Nn]n can be written as the union of N
n(n−1)

2 translates of

[0, N ]×· · ·×[0, Nn] by elements of NZ×· · ·×NnZ, and by periodicity, the integral

over such a translate is unchanged. The right-hand side is therefore equal to

N−n
2

∫
[0,Nn]n

∣∣∣ N∑
j=1

e(γn(j/N) · x)
∣∣∣n(n+1)

dx,
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from which we see it suffices to prove∫
[0,Nn]n

∣∣∣ N∑
j=1

e(γn(j/N) · x)
∣∣∣n(n+1)

dx .n,ε N
n2+

n(n+1)
2

+ε.

Theorem 4.8 is now almost applicable. The last step is to replace the integral

over [0, Nn]n by an integral over Rn, and to do so, we choose by Proposition 2.13

some ψ ∈ S(Rn) such that ψ ∼ 1 on [0, 1]n, with ψ̂ supported in B(0, 1). Then,

given any N ∈ N, we have∫
[0,Nn]n

∣∣∣ N∑
j=1

e(γn(j/N) · x)
∣∣∣n(n+1)

dx .n

∫
Rn

∣∣∣ N∑
j=1

ψ(x/Nn)e(γn(j/N) · x)
∣∣∣n(n+1)

dx.

But ψ(x/Nn) has Fourier support in B(0, N−n), from which it follows that the

Fourier support of ψ(x/Nn)e(γn(j/N) · x) is contained in B(γn(j/N), N−n) ⊂
θj/N,N−1 (by similar computations which led to equation (3.23)). Theorem 4.8

therefore applies, giving∫
[0,Nn]n

∣∣∣ N∑
j=1

e(γn(j/N) · x)
∣∣∣n(n+1)

dx .n,ε N
ε
( N∑
j=1

‖ψ(x/Nn)‖2
Ln(n+1)(Rn)

)n(n+1)
2

.

But a change of variables gives

‖ψ(x/Nn)‖n(n+1)

Ln(n+1)(Rn)
= Nn2‖ψ‖n(n+1)

Ln(n+1)(Rn)
,

hence ‖ψ(x/Nn)‖2
Ln(n+1)(Rn)

∼ N
2n
n+1 . It follows that

∫
[0,Nn]n

∣∣∣ N∑
j=1

e(γn(j/N) · x)
∣∣∣n(n+1)

dx .n,ε N
ε
( N∑
j=1

N
2n
n+1

)n(n+1)
2

= Nn2+
n(n+1)

2
+ε.

4.4 The Parabola: A Model Case

We have now seen one example of the power of decoupling theorems, but we are

yet to provide any insight into how they may be proven. We therefore dedicate

this section to proving the model n = 2 case of Theorem 4.5.

We will closely follow an argument of Tao [Tao20a], which is in turn based on

an article of Li [Li21]. We streamline Tao’s argument by rescaling two of the

parameters in the definition of the bilinear decoupling constant, with the effect
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of rendering Lemma 14 of [Tao20a] superfluous. We also opt for our final proof

to more closely resemble the argument of Li than that of Tao.

Recall that when n = 2, given 0 < δ ≤ 1 and ξ ∈ R, we let Pξ,δ denote the

parallelogram

Pξ,δ = {(ξ1, ξ2) ∈ R2 : |ξ1 − ξ| < δ ; |ξ2 − ξ2 − 2ξ(ξ1 − ξ)| < δ2}.

To reiterate, the theorem is as follows:

Theorem 4.10 (Decoupling for the Parabola). Let 0 < δ ≤ 1, and let Σ ⊂ [−1, 1]

be δ-separated. If for each ξ ∈ Σ, fξ ∈ S(R2) has Fourier support in Pξ,δ, then∥∥∥∑
ξ∈Σ

fξ

∥∥∥
L6(R2)

.ε δ
−ε
(∑
ξ∈Σ

‖fξ‖2
L6(R2)

)1/2

for all ε > 0.

For the sake of convenience, we introduce the notion of a decoupling constant :

Definition 4.11. Let U = {U1, · · · , Um} be a finite multiset of nonempty open

sets Ui ⊂ Rn, and let 1 ≤ p ≤ ∞. Then, the Lp decoupling constant Decp(U)

associated to U and p is the smallest constant for which

∥∥∥ m∑
i=1

fi

∥∥∥
Lp(Rn)

≤ Decp(U)
( m∑
i=1

‖fi‖2
Lp(Rn)

)1/2

whenever fi ∈ S(Rn) has Fourier support in Ui for each i.

Thus, letting D(δ) denote the supremum of the L6 decoupling constants

Dec6({Pξ,δ : ξ ∈ Σ}) across all δ-separated subsets Σ ⊂ [−1, 1], Theorem 4.10 is

equivalent to the statement that D(δ) .ε δ
−ε for all ε > 0.

The following property of decoupling constants will be useful throughout the

arguments which follow:

Proposition 4.12 (Affine Invariance). Let 1 ≤ p ≤ ∞. Then

Decp({LU1, · · · , LUm}) = Decp({U1, · · · , Um})

whenever the Ui ⊂ Rn are nonempty and open, and L : Rn → Rn is an invertible

affine transformation.
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Proof. Since any invertible affine transformation L is a composition of an invert-

ible linear map T : Rn → Rn and a translation x 7→ x+ τ , it suffices to prove the

proposition for such maps.

Let fi ∈ S(Rn) have Fourier support in Ui for each i. Given an invertible linear

map T : Rn → Rn, Proposition 2.2 implies that (fi ◦ T t)̂ = | detT−t|f̂i ◦ T−1 is

supported in TUi. It follows by a change of variables that∥∥∥ m∑
i=1

fi

∥∥∥
Lp(Rn)

= | detT t|1/p
∥∥∥ m∑
i=1

fi ◦ T t
∥∥∥
Lp(Rn)

≤ | detT t|1/p Decp({TU1, · · · , TUm})
( m∑
i=1

‖fi ◦ T t‖2
Lp(Rn)

)1/2

= Decp({TU1, · · · , TUm})
( m∑
i=1

‖fi‖2
Lp(Rn)

)1/2

,

hence Decp({U1, · · · , Um}) ≤ Decp({TU1, · · · , TUm}). Applying this with TUi in

place of Ui and T−1 in place of T gives the reverse inequality.

Given a translation defined by x 7→ x+τ , Proposition 2.2 gives that (e2πiτ ·xfi)̂ =

(f̂i)τ is supported in Ui + τ . A similar computation as above shows that we have

Decp({U1, · · · , Um}) ≤ Decp({U1 +τ, · · · , Um+τ}), and applying this with Ui+τ

in place of Ui and −τ in place of τ gives the reverse inequality.

The first important property we must prove specific to the parabola is the

following rescaling lemma:

Lemma 4.13 (Parabolic Rescaling). Let 0 < δ ≤ δ0 ≤ 1, and let Σ be a δ-

seperated subset of an interval I ⊂ [−1, 1] of length 2δ0. Then,

Dec6({Pξ,δ : ξ ∈ Σ}) ≤ D(δ/δ0).

Proof. Write I = [ξ0− δ0, ξ0 + δ0]. It is routine to check that the invertible affine

transformation Gξ0 : R2 → R2 defined by

Gξ0(ξ1, ξ2) = (ξ1 − ξ0, ξ2 − 2ξ0ξ1 + ξ2
0)

maps the parabola to the parabola, and parallelograms Pξ,δ to parallelograms

Pξ−ξ0,δ. Since Gξ0 maps I to [−δ0, δ0] and preserves the separation between each

of the ξ ∈ Σ, we may assume without loss of generality by affine invariance that

I = [−δ0, δ0].

It is also routine to check that the invertible linear map T : R2 → R2 defined by

T (ξ1, ξ2) = (ξ1/δ0, ξ2/δ
2
0)
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maps the parabola to the parabola, and parallelograms Pξ,δ to parallelograms

Pξ/δ0,δ/δ0 . Since the set Σ/δ0 ⊂ [−1, 1] is δ/δ0-separated, affine invariance again

gives

Dec6({Pξ,δ : ξ ∈ Σ}) = Dec6({Pξ/δ0,δ/δ0 : ξ ∈ Σ}) ≤ D(δ/δ0),

where the last inequality is by the definition of D(δ/δ0).

Using parabolic rescaling, it is not too hard to show thatD(δ1δ2) . D(δ1)D(δ2)

for all 0 < δ1, δ2 ≤ 1. This property suggests that an “induction on scales” ap-

proach could be used to prove D(δ) .ε δ
−ε; indeed, starting with D(1/2) .ε 2ε,

we could iterate D(δ1δ2) . D(δ1)D(δ2) to obtain D(2−k) .k,ε (2k)ε for all positive

integers k. The problem with this approach is that the implied constant depends

on k, and grows without bound as k → ∞. To proceed with an induction on

scales approach, a more complicated bilinear variant of D(δ) must be introduced.

Definition 4.14 (Bilinear Decoupling Constant). Let 0 < δ ≤ 2ρ1, 2ρ2 ≤ ν ≤ 1.

Define M2,4(δ, ν, ρ1, ρ2) to be the infimum over all constants C such that∫
R2

∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx ≤ C6
( ∑
ξ1∈Σ1

‖fξ1‖2
L6(R2)

)( ∑
ξ2∈Σ2

‖gξ2‖2
L6(R2)

)2

whenever Σ1,Σ2 ⊂ [−1, 1] are δ-separated subsets of intervals I1, I2 ⊂ [−1, 1] of

length 2ρ1 and 2ρ2 respectively, with dist(I1, I2) ≥ ν, and fξ1 ∈ S(R2) has Fourier

support in Pξ1,δ for each ξ1 ∈ Σ1 and gξ2 ∈ S(R2) has Fourier support in Pξ2,δ for

each ξ2 ∈ Σ2.

Since our ultimate goal is to prove a bound for D(δ), we would naturally

like to estimate D(δ) by bilinear decoupling constants. This is enabled by the

following result:

Lemma 4.15 (Bilinear Reduction). Let 0 < δ ≤ ν ≤ 1/2. Then,

D(δ) . ν−O(1)M2,4(δ, 2ν, ν, ν) +D(δ/ν).

Remark 4.16. When used in this form, O(1) simply refers to a finite constant

that is independent of all parameters. Recall that when using this notation, we

allow the constant to change each line.

Proof. Let Σ ⊂ [−1, 1] be δ-separated, and for each ξ ∈ Σ, let fξ ∈ S(R2) have

Fourier support in Pξ,δ. We wish to prove that∥∥∥∑
ξ∈Σ

fξ

∥∥∥
L6(R2)

. (ν−O(1)M2,4(δ, 2ν, ν, ν) +D(δ/ν))
(∑
ξ∈Σ

‖fξ‖2
L6(R2)

)1/2

.
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By scale invariance, we may normalise so that
∑

ξ∈Σ ‖fξ‖2
L6(R2) = 1. Raising both

sides to the power of 6 and observing that (ν−O(1)M2,4(δ, ν, ν, ν) + D(δ/ν))6 ∼
ν−O(1)M2,4(δ, ν, ν, ν)6 +D(δ/ν)6, we see that it suffices to prove∫

R2

∣∣∣∑
ξ∈Σ

fξ

∣∣∣6 dx . ν−O(1)M2,4(δ, ν, ν, ν)6 +D(δ/ν)6. (4.8)

Let I denote the collection of O(ν−1) intervals

I = {[−1 + 2(k − 1)ν,−1 + 2kν] : k = 1, · · · , bν−1c} ∪ {[1− 2ν, 1]} (4.9)

of length 2ν covering [−1, 1], and partition Σ into subsets ΣI such that ΣI ⊂ I

for each I ∈ I. Then, by our normalisation and the definition of M2,4(δ, 2ν, ν, ν),

we have ∑
I,J∈I:dist(I,J)≥2ν

∫
R2

∣∣∣ ∑
ξ∈ΣI

fξ

∣∣∣2∣∣∣ ∑
ξ∈ΣJ

fξ

∣∣∣4 dx . ν−O(1)M2,4(δ, 2ν, ν, ν)6. (4.10)

Moreover, by parabolic rescaling, we also have∑
I∈I

∫
R2

∣∣∣ ∑
ξ∈ΣI

fξ

∣∣∣6 dx ≤ D(δ/ν)6
∑
I∈I

(∑
ξ∈ΣI

‖fξ‖2
L6(R2)

)3

≤ D(δ/ν)6
(∑
I∈I

∑
ξ∈ΣI

‖fξ‖2
L6(R2)

)3

= D(δ/ν)6, (4.11)

where we have again used our normalisation. By (4.10) and (4.11), we see that

to prove (4.8), it suffices to prove a pointwise bound of the form∣∣∣∑
ξ∈Σ

fξ

∣∣∣6 . ν−O(1)
∑

I,J∈I : dist(I,J)≥2ν

∣∣∣ ∑
ξ∈ΣI

fξ

∣∣∣2∣∣∣ ∑
ξ∈ΣJ

fξ

∣∣∣4 +
∑
I∈I

∣∣∣ ∑
ξ∈ΣI

fξ

∣∣∣6. (4.12)

To do so, let A = |
∑

ξ∈Σ fξ| and AI = |
∑

ξ∈ΣI
fξ| for each I ∈ I, and let

N = |I| = O(ν−1). The triangle inequality gives A ≤
∑

I∈I AI , and it is clear that∑
I:AI≤A/2N AI ≤ A/2. It must therefore be the case that

∑
I:AI>A/2N

AI ≥ A/2.

It follows that if #{I : AI > A/2N} ≤ 3, then there must exist some I ∈ I such

that AI ≥ A/6, in which case upon raising to the power of 6 and recalling the

definition of A and AI , we find that∣∣∣∑
ξ∈Σ

fξ

∣∣∣6 . ∣∣∣ ∑
ξ∈ΣI

fξ

∣∣∣6 (4.13)

holds for that interval I. If, on the other hand, #{I : AI > A/2N} > 3, then

there must be at least 3 intervals I in the collection I \ {[1 − 2ν, 1]} satisfying
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AI > A/2N , at least two of which are separated by a distance of at least 2ν. It

follows that in this case,∣∣∣∑
ξ∈Σ

fξ

∣∣∣6 . ν−O(1)
∑

I,J∈I : dist(I,J)≥2ν

∣∣∣ ∑
ξ∈ΣI

fξ

∣∣∣2∣∣∣ ∑
ξ∈ΣJ

fξ

∣∣∣4. (4.14)

Since either of the cases leading to (4.13) or (4.14) must hold, we may add the

right-hand sides to obtain the pointwise bound (4.12), which completes the proof.

Given 0 < δ ≤ 2ρ′1, 2ρ1, 2ρ2 ≤ ν ≤ 1 with ρ′1 ≤ ρ1, it is clear by the definition

of the bilinear decoupling constant that M2,4(δ, ν, ρ′1, ρ2) ≤M2,4(δ, ν, ρ1, ρ2). The

next lemma says that if ρ′1 is not too small relative to ρ2, then M2,4(δ, ν, ρ′1, ρ2)

cannot be too much smaller than M2,4(δ, ν, ρ1, ρ2). This ability to bound bilinear

decoupling constants by those with a smaller ρ1 will be key in our proof of the

decoupling theorem, in which we iteratively shrink ρ1 in this manner.

Lemma 4.17 (Key Estimate). If 0 < δ ≤ 2ρ′1, 2ρ1, 2ρ2 ≤ ν ≤ 1 with ρ2
2 ≤ ρ′1 ≤

ρ1, then

M2,4(δ, ν, ρ1, ρ2) . ν−O(1)M2,4(δ, ν, ρ′1, ρ2).

Proof. Let Σ1,Σ2 ⊂ [−1, 1] be δ-separated subsets of intervals I1, I2 ⊂ [−1, 1]

of length 2ρ1 and 2ρ2 respectively, with dist(I1, I2) ≥ ν. Let fξ1 ∈ S(R2) have

Fourier support in Pξ1,δ for each ξ1 ∈ Σ1, and let gξ2 ∈ S(R2) have Fourier support

in Pξ2,δ for each ξ2 ∈ Σ2. By scale invariance, it suffices to prove∫
R2

∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx . ν−O(1)M2,4(δ, ν, ρ′1, ρ2)6

assuming the normalisation
∑

ξ1∈Σ1
‖fξ1‖2

L6(R2) =
∑

ξ2∈Σ2
‖gξ2‖2

L6(R2) = 1. To do

so, we first cover I1 by a collection I ′ of intervals of length 2ρ′1 analogously to the

covering of [−1, 1] by the collection I in (4.9). Then, partition Σ1 into subsets

Σ1,I′ such that Σ1,I′ ⊂ I ′ for each I ′ ∈ I ′. We have dist(I ′, J) ≥ ν since I ′ ⊂ I

for each I ′ ∈ I ′, hence∫
R2

∣∣∣ ∑
ξ1∈Σ1,I′

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx ≤M2,4(δ, ν, ρ′1, ρ2)6
( ∑
ξ1∈Σ1,I′

‖fξ1‖2
L6(R2)

)
by the definition of the bilinear decoupling constant and using the normalisation∑

ξ2∈Σ2
‖gξ2‖2

L6(R2) = 1. It therefore suffices to prove∫
R2

∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx . ν−O(1)
∑
I′∈I′

∫
R2

∣∣∣ ∑
ξ1∈Σ1,I′

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx. (4.15)
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Letting FI′ =
∑

ξ1∈Σ1,I′
fξ1 for each I ′ ∈ I and letting G =

(∑
ξ2∈Σ2

gξ2

)2

, (4.15)

is equivalent to the decoupling inequality∥∥∥ ∑
I′∈I′

FI′G
∥∥∥2

L2(R2)
. ν−O(1)

∑
I′∈I′
‖FI′G‖2

L2(R2).

By Example 4.2, it suffices to show the Fourier supports of each of the FI′G have

an overlap of O(ν−O(1)).

Let I2 = [ξ0 − ρ2, ξ0 + ρ2]. The overlap of the Fourier supports of the FI′G is

unchanged by a bijection of R2, so by applying the invertible affine transformation

Gξ0 as defined in the proof of parabolic rescaling, it suffices to consider the case

where I2 = [−ρ2, ρ2], and I1 ⊂ [−2, 2] satisfies dist(I1, {0}) ≥ ν. Under these

simplifications, it is not hard to see from the assumption δ ≤ 2ρ2 that there is a

rectangle of the form

R = {(ξ1, ξ2) : ξ1 = O(ρ2) ; ξ2 = O(ρ2
2 + δ)}.

such that Pξ,δ is contained in R for all ξ ∈ Σ2. It follows that
∑

ξ2∈Σ2
gξ2 has

Fourier support in R, and recalling how convolution affects supports, it is clear

that G =
(∑

ξ2∈Σ2
gξ2

)2

has Fourier support in a rectangle of the same form

(after suitably enlarging the implied constants in the O(·) notation).

Let ξI′ be the centre of I ′ for each I ′ ∈ I ′, so I ′ = [ξI′−ρ′1, ξI′+ρ′1]. It is not hard

to see from the assumption δ ≤ 2ρ′1 that there is a horizontal strip of the form

SI′ = {(ξ1, ξ2) : ξ2 = ξ2
I′ +O(ρ′1)}.

such that Pξ,δ is contained in SI′ for all ξ ∈ Σ1,I′ . It follows that FI′ has Fourier

support in SI′ and hence, using the assumptions ρ2
2 ≤ ρ′1 and δ ≤ 2ρ′1 and

comparing the Fourier supports of FI′ andG, we see that FI′G has Fourier support

in a strip of the same form (after suitably enlarging the implied constants in the

O(·) notation). Thus, if (ξ1, ξ2) ∈ SI′ for some I ′ ∈ I ′, then (ξ1, ξ2) can only also

lie in SJ ′ for those J ′ ∈ I ′ for which ξ2
I′ − ξ2

J ′ = O(ρ′1). But this is only true

if ξI′ − ξJ ′ = O(ρ′1/|ξI′ + ξJ ′ |) = O(ρ′1ν
−1), where the last equality holds since

|ξI′+ξJ ′| = |ξI′|+ |ξJ ′ | & ν. Since |ξI′−ξJ ′ | = 2ρ′1 for adjacent intervals I ′, J ′ ∈ I ′

by construction (with one possible exception), there can be at most O(ν−1) such

J ′, and the Fourier supports of the FI′G therefore have an overlap of O(ν−O(1))

as required.

The final two results we need before proving the decoupling theorem are each

simple consequences of Hölder’s inequality and parabolic rescaling. The first
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CHAPTER 4. FOURIER DECOUPLING

describes how ρ1 and ρ2 can be interchanged in the bilinear decoupling constant,

and the second is a counterpart to bilinear reduction, allowing us to estimate

bilinear decoupling constants by ordinary linear decoupling constants.

Lemma 4.18. Let 0 < δ ≤ 2ρ1, 2ρ2 ≤ ν ≤ 1. Then,

M2,4(δ, ν, ρ1, ρ2) ≤M2,4(δ, ν, ρ2, ρ1)1/2D(δ/ρ2)1/2.

Proof. With the same setup as in the proof of Lemma 4.17, we apply Hölder’s

inequality with the splitting∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 =
(∣∣∣ ∑

ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣)∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣3
to give ∫

R2

∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx ≤ (∫
R2

∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣2∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣4 dx)1/2

(∫
R2

∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣6 dx)1/2

.

Estimating the first term using the definition of M2,4(δ, ν, ρ2, ρ1) and the second

term by parabolic rescaling gives the result.

Lemma 4.19. Let 0 < δ ≤ 2ρ1, 2ρ2 ≤ ν ≤ 1. Then,

M2,4(δ, ν, ρ1, ρ2) ≤ D(δ/ρ1)1/3D(δ/ρ2)2/3.

Proof. With the same setup as in the proof of Lemma 4.17, we apply Hölder’s

inequality to give∫
R2

∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣2∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣4 dx ≤ (∫
R2

∣∣∣ ∑
ξ1∈Σ1

fξ1

∣∣∣6 dx)1/3(∫
R2

∣∣∣ ∑
ξ2∈Σ2

gξ2

∣∣∣6 dx)2/3

.

Estimating both terms by parabolic rescaling gives the result.

We are now ready to prove the decoupling theorem. The idea is that by bilin-

ear reduction, it suffices to estimate M2,4(δ, 2ν, ν, ν) for an appropriately chosen ν.

The key estimate allows us to control this term by M2,4(δ, 2ν, ν2, ν) with a loss of

ν−O(1), and Lemma 4.18 allows us to estimate this byM2,4(δ, 2ν, ν, ν2)1/2D(δ/ν)1/2.

Iterating the process of lowering ρ1 to ρ2
2 and interchanging leads to the result.
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4.4. THE PARABOLA: A MODEL CASE

Proof (Decoupling for the Parabola): Consider the set

Λ = {λ ≥ 0 : D(δ) .ε δ
−λ−ε for all 0 < δ ≤ 1 and all ε > 0},

and note that Λ is nonempty since any δ-separated subset of [−1, 1] has cardi-

nality O(δ−1), from which the trivial bound (4.3) gives D(δ) . δ−1/2 .ε δ
−1/2−ε,

hence 1/2 ∈ Λ.

Let λ = inf Λ. We wish to prove that λ = 0, so assume for the sake of contradic-

tion that λ > 0. Choose N large enough that

O(1)

λ
− 5

3
−N ≤ −2

(where the O(1) term is a sufficiently large multiple of that appearing in the

key estimate), and suppose 0 < δ ≤ 1

22N+1 . Letting 2ν = δ1/2N+1
, we have

0 < δ ≤ ν ≤ 1/2, so bilinear reduction gives

D(δ) . ν−O(1)M2,4(δ, 2ν, ν, ν) +D(δ/ν). (4.16)

We also have 0 < δ ≤ 2ν2 ≤ 2ν ≤ 1, so the key estimate followed by Lemma 4.18

gives

M2,4(δ, 2ν, ν, ν) . ν−O(1)M2,4(δ, 2ν, ν, ν2)1/2D(δ/ν)1/2.

In fact, by our choice of δ and ν, we have 0 < δ ≤ 2ν2j ≤ 2ν ≤ 1 for all 1 ≤ j ≤ N ,

so we may iterate the key estimate and Lemma 4.18 in this fashion to obtain

M2,4(δ, 2ν, ν, ν) .N ν−O(1)
∑N−1
j=0 2−jM2,4(δ, 2ν, ν2N−1

, ν2N )
1

2N

N∏
j=1

D(δ/ν2j−1

)
1

2j

.N ν−O(1)D(δ/ν2N−1

)
1

3·2ND(δ/ν2N )
2

3·2N

N∏
j=1

D(δ/ν2j−1

)
1

2j , (4.17)

where we have used Lemma 4.19 on the last line. Together with equation (4.16),

(4.17) gives

D(δ) .N ν−O(1)D(δ/ν2N−1

)
1

3·2ND(δ/ν2N )
2

3·2N

N∏
j=1

D(δ/ν2j−1

)
1

2j +D(δ/ν)

= I + II. (4.18)

Now, choose λ′ ∈ Λ, and note that D(δ) .ε δ
−λ′−ε for all ε > 0 by the definition

of Λ. It follows from our choice of ν that for any 1 ≤ j ≤ N and all ε > 0, we
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CHAPTER 4. FOURIER DECOUPLING

have

D(δ/ν2j) = D(22jδ1− 2j

2N+1 ) .ε 2−2j(λ′+ε)δ−λ
′(1− 2j

2N+1 )−ε

.ε δ
−λ′(1− 2j

2N+1 )−ε. (4.19)

Letting Cε be the logarithm of the implied constant associated to ε in (4.19)

(which we allow to change each line), taking logarithms gives

log(D(δ/ν2j)) ≤ − log(δ)
(
λ′
(

1− 2j

2N+1

)
+ ε
)

+ Cε. (4.20)

We may therefore compute

log(I) ≤ − log(δ)
(
λ′
( O(1)

λ′2N+1
+

1

2N+2
+

1

3 · 2N
+

N∑
j=1

( 1

2j
− 1

2N+2

))
+ ε
)

+ Cε

= − log(δ)
(
λ′
(

1 +
1

2N+2

(O(1)

λ′
− 5

3
−N

))
+ ε
)

+ Cε

≤ − log(δ)
(
λ′
(

1− 1

2N+1

)
+ ε
)

+ Cε, (4.21)

where the last line follows by our choice of N (noting that λ′ ≥ λ). Equation

(4.20) also gives

log(II) ≤ − log(δ)
(
λ′
(

1− 1

2N+1

)
+ ε
)

+ Cε, (4.22)

so by equations (4.18), (4.21), and (4.22), we have

D(δ) .N,ε δ
−λ′(1− 1

2N+1 )−ε

for all 0 < δ ≤ 1

22N+1 and all ε > 0. Since this is also trivially true for 1

22N+1 < δ ≤
1, we see that (1 − 1

2N+1 )λ′ ∈ Λ. But by choosing λ′ ∈ Λ small enough initially,

we can ensure (1 − 1
2N+1 )λ′ < λ, contradicting the fact that λ is a lower bound

for Λ. It follows that we must have λ = 0.

We will not treat any higher-dimensional cases of the decoupling theorem for

the paraboloid, though we note that they rely inductively upon the n = 2 case.
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Chapter 5

A New Proof of the Tomas

Restriction Theorem

In this chapter, we unite the fields of Fourier restriction and decoupling by pre-

senting a new proof of the Tomas restriction theorem for the paraboloid based on

decoupling. We will see that the local extension estimates R∗Pn−1(2 → 2(n+1)
n−1

; ε)

for all ε > 0 follow quite easily from the decoupling theorem for the paraboloid;

the main difficulty lies in proving an appropriate ε-removal theorem to convert

this family of local extension estimates to a suitable family of global extension

estimates. In fact, we will prove a more general result, showing that for any pair

of exponents (p, q) with 2 ≤ p ≤ q ≤ ∞, knowing R∗Pn−1(p → q ; ε) for all ε > 0

implies the global extension estimates R∗Pn−1(p→ r) for all r > q.

5.1 The Local Tomas-Stein Estimate

Our first goal is to prove R∗Pn−1(2 → 2(n+1)
n−1

; ε) for all ε > 0, which we will call

the local Tomas-Stein estimate. In light of Proposition 3.17, it suffices to prove

that whenever R ≥ 1 and g ∈ S(Rn) has Fourier support in NR−1(P n−1), we have

‖g‖
L

2(n+1)
n−1 (B(0,R))

.ε R
ε−1/2‖ĝ‖L2(Rn) for all ε > 0. It is evident that there is some

similarity between this estimate and the conclusion of the decoupling theorem for

the paraboloid; indeed, it is in proving this estimate that the decoupling theorem

becomes useful.

There is a manifestation of the uncertainty principle known as Bernstein’s in-

equality which states that if g ∈ S(Rn) has Fourier support in the ball B(0, R),

then ‖g‖Lq(Rn) .p,q |B(0, R)|1/p−1/q‖g‖Lp(Rn) for all 1 ≤ p ≤ q ≤ ∞. We will

require a variant of Bernstein’s inequality specific to the regions Pξ,δ featured in
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CHAPTER 5. A NEW PROOF OF THE TOMAS RESTRICTION THEOREM

the decoupling theorem for the paraboloid. Our proof of this variant is inspired

by that given for discs and ellipsoids in Chapter 5 of [Wol03].

Theorem 5.1. Let ξ ∈ Rn−1 and δ > 0, and suppose g ∈ S(Rn) has Fourier

support in Pξ,δ. Then, for all 1 ≤ p ≤ q ≤ ∞, we have

‖g‖Lq(Rn) .p,q |Pξ,δ|1/p−1/q‖g‖Lp(Rn).

Proof. Fix some ϕ ∈ S(Rn) with ϕ̂ ≡ 1 on [−1, 1]n, and define an invertible affine

transformation Gξ,δ : Rn → Rn by

Gξ,δ(ξ
′, ξn) = (δ−1(ξ′ − ξ), δ−2(ξn − |ξ|2 − 2ξ · (ξ′ − ξ))).

It is clear by the definitions that Gξ,δ maps Pξ,δ to the cube [−1, 1]n, so we

have ϕ̂ ◦ Gξ,δ ≡ 1 on Pξ,δ. Since g has Fourier support in Pξ,δ, it follows that

ĝ = ĝ(ϕ̂◦Gξ,δ), from which we see that g = g ∗ (ϕ̂◦Gξ,δ)
̂

upon Fourier inversion.

Letting r satisfy 1/p + 1/r = 1 + 1/q (which is possible since 1 ≤ p ≤ q ≤ ∞),

Young’s convolution inequality gives

‖g‖Lq(Rn) = ‖g ∗ (ϕ̂ ◦Gξ,δ)
̂
‖Lq(Rn) ≤ ‖g‖Lp(Rn)‖(ϕ̂ ◦Gξ,δ)

̂
‖Lr(Rn). (5.1)

Now, Gξ,δ is the composition of a translation and the invertible linear map Tξ,δ :

Rn → Rn defined by

Tξ,δ(ξ
′, ξn) = (δ−1ξ′, δ−2(ξn − 2ξ · ξ′)).

By translation invariance, we have ‖(ϕ̂ ◦ Gξ,δ)
̂
‖Lr(Rn) = ‖(ϕ̂ ◦ Tξ,δ)

̂
‖Lr(Rn), and

by Proposition 2.2 and Fourier inversion, we have

(ϕ̂ ◦ Tξ,δ)
̂

= | detTξ,δ|−1(ϕ ◦ T−tξ,δ ).

It follows by a change of variables that

‖(ϕ̂ ◦Gξ,δ)
̂
‖Lr(Rn) = | detTξ,δ|−1

(∫
Rn
|ϕ ◦ T−tξ,δ (x)|r dx

)1/r

= | detTξ,δ|−1/r′‖ϕ‖Lr(Rn). (5.2)

Since ϕ is a fixed function, ‖ϕ‖Lr(Rn) depends only on r, which depends only on

p and q. Moreover, | detTξ,δ|−1 ∼ |Pξ,δ|. Noting that 1/r′ = 1/p− 1/q, equations

(5.1) and (5.2) therefore give the result.

Having established an appropriate variant of Bernstein’s inequality, we are

ready to prove R∗Pn−1(2→ 2(n+1)
n−1

; ε) for all ε > 0.
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Theorem 5.2 (The Local Tomas-Stein Estimate). R∗Pn−1(2 → 2(n+1)
n−1

; ε) holds

for all ε > 0.

Proof. By Proposition 3.17, it suffices to prove that whenever R ≥ 1 and g ∈
S(Rn) has Fourier support in NR−1(P n−1), we have

‖g‖
L

2(n+1)
n−1 (B(0,R))

.ε R
ε−1/2‖ĝ‖L2(Rn) (5.3)

for all ε > 0. In fact, we will prove the stronger statement in which the inequality

(5.3) is replaced by

‖g‖
L

2(n+1)
n−1 (Rn)

.ε R
ε−1/2‖ĝ‖L2(Rn).

Suppose g ∈ S(Rn) has Fourier support inNR−1(P n−1), and let ΣR = R−1/2Zn−1∩
[−1, 1]n−1. Note that NR−1 is covered by the collection PR = {Pξ,R−1/2 : ξ ∈ ΣR},
after possibly making the regions Pξ,R−1/2 taller by a fixed factor (recalling that

the decoupling theorem remains true after such a scaling). By Theorem 2.39, let

(ηP )P∈PR be a partition of unity subordinate to this cover, and for each P ∈ PR,

let gP = (ĝηP )
̂
. Each gP is Schwartz as the inverse Fourier transform of a

Schwartz function, and by Fourier inversion, we have that ĝP = ĝηP is supported

in P . It follows from the property
∑

P∈PR ηP = 1 that
∑

P∈PR ĝP = ĝ and hence,

upon Fourier inversion, we have
∑

P∈PR gP = g. The decoupling theorem for the

paraboloid therefore gives

‖g‖
L

2(n+1)
n−1 (Rn)

=
∥∥∥ ∑
P∈PR

gP

∥∥∥
L

2(n+1)
n−1 (Rn)

.ε R
ε
( ∑
P∈PR

‖gP‖2

L
2(n+1)
n−1 (Rn)

)1/2

(5.4)

for all ε > 0. Since ĝP is supported in P , Theorem 5.1 and Plancherel’s theorem

give

‖gP‖2

L
2(n+1)
n−1 (Rn)

. |P |1−
n−1
n+1‖gP‖2

L2(Rn)

. (R−(n+1)/2)1−n−1
n+1‖ĝP‖2

L2(Rn)

= R−1‖ĝP‖2
L2(Rn),

and substituting this into (5.4) gives

‖g‖
L

2(n+1)
n−1 (Rn)

.ε R
ε
( ∑
P∈PR

R−1‖ĝP‖2
L2(Rn)

)1/2

= Rε−1/2
( ∑
P∈PR

‖ĝP‖2
L2(Rn)

)1/2

(5.5)
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for all ε > 0. Now, each ξ ∈ Rn lies in at most 2n−1 of the regions P , and it

follows that
∑

P∈PR |ηP |
2 ≤ 2n−1. We therefore have∑

P∈PR

‖ĝP‖2
L2(Rn) =

∑
P∈PR

∫
Rn
|ĝηP |2 dx =

∫
Rn
|ĝ|2
( ∑
P∈PR

|ηP |2
)
dx

. ‖ĝ‖2
L2(Rn),

which together with (5.5) gives

‖g‖
L

2(n+1)
n−1 (Rn)

.ε R
ε−1/2‖ĝ‖L2(Rn).

5.2 ε-Removal

We now treat the problem of bootstrapping the local extension estimate of the

previous section to a global extension estimate. We will prove a more general ε-

removal theorem which states that for all pairs of exponents (p, q) in a particular

range, a local extension estimate R∗Pn−1(p → q ; ε) with ε > 0 sufficiently small

implies a global extension estimate R∗Pn−1(p → r) for all r larger than q by a

certain threshold, with the threshold becoming arbitrarily small as ε→ 0.

Theorem 5.3 (ε-removal). For all 2 ≤ p ≤ q ≤ ∞ and all ε > 0 sufficiently

small, R∗Pn−1(p→ q ; ε) implies R∗Pn−1(p→ r) whenever 1
r
< 1

q0
:= 1

q
− 4 log 2

q log(1/εq)
.

1/q

1/p
(1, 0):

Trivial Estimate

1/21/p

1/2

(1
p
, 1
q
)

(1
p
, 1
q0

)

Figure 5.1: Theorem 5.3 visualised.
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Theorem 5.3, and our approach to proving it, can be easily visualised using

the above strong-type diagram for the extension operator EPn−1 . Given the local

extension estimate R∗Pn−1(p → q ; ε) (where (1
p
, 1
q
) lies in the closed triangular

region), we wish to deduce the global extension estimate R∗Pn−1(p → r) for all

r with 1
r
< 1

q0
= 1

q
− 4 log 2

q log(1/εq)
. That is, we know a local extension estimate

corresponding to the open circle at (1
p
, 1
q
), and we wish to prove the global exten-

sion estimate for all pairs of exponents corresponding to the vertical line between

(1
p
, 1
q0

) and (1
p
, 0). If we prove that E is of weak-type (p, q0), then by real in-

terpolation with the known strong-type (p,∞) estimate (which follows from the

trivial estimate and Lemma 3.11), we will obtain a global extension estimate for

all pairs of exponents in the required range. It therefore suffices to prove

‖Ef‖Lq0,∞(Rn) . ‖f‖Lp(Pn−1,dσ),

for all f ∈ Lp(P n−1, dσ), and our first step will be to bootstrap the local extension

estimate ‖Ef‖Lq(B(0,R)) . Rε‖f‖Lp(Pn−1, dσ) to an analogous estimate for multiple

R-balls
⋃
iB(xi, R), provided the balls are sufficiently separated, or sparse. We

will then show that the superlevel sets {x ∈ Rn : |Ef(x)| ≥ t} can be covered

by a reasonably small number of sparse collections of balls of sufficiently small

radius, from which we will be able to deduce the result. Our approach is based

on that taken to prove a slightly different ε-removal result in [Tao99].

Definition 5.4. A collection {B(xi, R)}Ni=1 of R-balls is said to be sparse if

|xj − xi| & (RN)
2

n−1 for all i 6= j.

Remark 5.5. The implied constant in the definition of sparseness should be

considered fixed but yet to be determined.

The following lemma and its proof are inspired by Lemma 3.2 of [Tao99].

Lemma 5.6. Let 2 ≤ p ≤ q ≤ ∞, and suppose R∗Pn−1(p→ q ; ε) holds. Then for

all R ≥ 1 and all f ∈ Lp(P n−1, dσ), we have

‖Ef‖Lq(⋃Ni=1B(xi,R)) . Rε‖f‖Lp(Pn−1, dσ)

whenever {B(xi, R)}Ni=1 is a sparse collection of R-balls.

Proof. Let R ≥ 1. By Proposition 3.18 and tranlation invariance, R∗Pn−1(p →
q ; ε) implies that for all x ∈ Rn and all g ∈ S(Rn) with Fourier support in

NR−1(P n−1), we have

‖g‖Lq(B(x,R)) . Rε−1/p′‖ĝ‖Lp(NR−1 (Pn−1)). (5.6)
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By Proposition 2.13, choose some nonnegative ψ ∈ S(Rn) such that ψ ∼ 1

on B(0, 1), with ψ̂ also nonnegative and supported in B(0, 1). Given a sparse

collection of R-balls {B(xi, R)}Ni=1, we let ψi(x) = ψ((x − xi)/R). Given f ∈
Lp(P n−1, dσ), the same argument as in the derivation of equation (3.22) gives

‖Ef‖Lq(∪iB(xi,R)) ∼
( N∑
i=1

‖ψiEf‖qLq(B(xi,R))

)1/q

. (5.7)

By similar steps which led to equation (3.23), we find that ψ̂iEf = ψ̂i ∗ (fdσ),

which is smooth and supported in NR−1(P n−1). We may therefore apply (5.6),

giving

‖ψiEf‖Lq(B(xi,R)) . Rε−1/p′‖ψ̂i ∗ (fdσ)‖Lp(NR−1 (Pn−1)).

Combining with (5.7), we see that

‖Ef‖Lq(∪iB(xi,R)) . Rε−1/p′
( N∑
i=1

‖ψ̂i ∗ (fdσ)‖qLp(NR−1 (Pn−1))

)1/q

≤ Rε−1/p′
( N∑
i=1

‖ψ̂i ∗ (fdσ)‖pLp(NR−1 (Pn−1))

)1/p

,

where the last inequality follows since p ≤ q and the `p norm is decreasing in p.

It therefore suffices to prove( N∑
i=1

‖ψ̂i ∗ (fdσ)‖pLp(NR−1 (Pn−1))

)1/p

. R1/p′‖f‖Lp(Pn−1, dσ). (5.8)

Now, define a linear operator T mapping functions on P n−1 to functions on Rn×
{1, · · · , N} by Tf(ξ, i) = ψ̂i∗(fdσ)(ξ). Then, (5.8) is equivalent to the statement

that T is of strong-type (p, p) with ‖T‖Lp→Lp . R1/p′ (where Rn × {1, · · · , N} is

given the product measure of the Lebesgue measure on Rn and counting measure

on {1, · · · , N}). Since p is in the range 2 ≤ p ≤ ∞, it suffices by Riesz-Thorin

interpolation to prove the bound (5.8) for p = 2 and p =∞.

For p =∞, we note that for any i and any ξ ∈ Rn, the triangle inequality gives

|ψ̂i ∗ (fdσ)(ξ)| ≤
∫
Pn−1

|ψ̂i(ξ − ω)||f(ω)| dσ(ω).

But ψ̂i(ξ − ω) is supported in B(ξ, R−1) (as a function of ω), and it follows that

|ψ̂i ∗ (fdσ)(ξ)| ≤ ‖ψ̂i‖L∞(Rn)‖f‖L∞(Pn−1 dσ)

∫
Pn−1

χB(ξ,R−1)(ω) dσ(ω). (5.9)
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Lemma 2.46 gives
∫
Pn−1 χB(ξ,R−1)(ω) dσ(ω) . R−(n−1); moreover, ‖ψ̂i‖L∞(Rn) =

Rn‖ψ̂‖L∞(Rn) ∼ Rn, from which equation (5.9) gives

‖ψ̂i ∗ (fdσ)‖L∞(Rn) . R‖f‖L∞(Pn−1 dσ).

Since this is true for all i, we have maxi ‖ψ̂i ∗ (fdσ)‖L∞(Rn) . R‖f‖L∞(Pn−1 dσ),

which is (5.8) for p =∞.

For p = 2, we exploit the fact that L2 is a Hilbert space, so T has an adjoint T ∗.

In what follows, we will have frequent need to refer to L2 → L2 operator norms,

so we tidy our notation by using ‖ · ‖ to denote ‖ · ‖L2→L2 .

Using the identity ‖TT ∗‖ = ‖T‖2, we see that it suffices to prove ‖TT ∗‖ . R

(this is known as the TT ∗ method). Identifying T ∗, we see that it suffices to prove

the estimate( N∑
j=1

∥∥∥ψjEE∗( N∑
i=1

ψigi

)∥∥∥2

L2(Rn)

)1/2

. R
( N∑
i=1

‖gi‖2
L2(Rn)

)1/2

whenever g1, · · · , gN ∈ L2(Rn). To estimate the left-hand side, we first note that

by the triangle inequality, we have∥∥∥ψjEE∗( N∑
i=1

ψigi

)∥∥∥
L2(Rn)

≤
N∑
i=1

‖ψjEE∗ψi‖‖gi‖L2(Rn),

where we are now viewing each ψjEE
∗ψi as an operator. Hence,( N∑

j=1

∥∥∥ψjEE∗( N∑
i=1

ψigi

)∥∥∥2

L2(Rn)

)1/2

≤
( N∑
j=1

( N∑
i=1

‖ψjEE∗ψi‖‖gi‖L2(Rn)

)2)1/2

.

(5.10)

But for each j, the Cauchy-Schwarz inequality gives( N∑
i=1

‖ψjEE∗ψi‖‖gi‖L2(Rn)

)2

≤
(

sup
j

N∑
i=1

‖ψjEE∗ψi‖
)

( N∑
i=1

‖ψjEE∗ψi‖‖gi‖2
L2(Rn)

)
,

hence,

N∑
j=1

( N∑
i=1

‖ψjEE∗ψi‖‖gi‖L2(Rn)

)2

≤
(

sup
j

N∑
i=1

‖ψjEE∗ψi‖
)

(
sup
i

N∑
j=1

‖ψjEE∗ψi‖
)( N∑

i=1

‖gi‖2
L2(Rn)

)
.

(5.11)
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But for each i and j, we have

‖ψjEE∗ψi‖ = ‖(ψjEE∗ψi)∗‖ = ‖ψiEE∗ψj‖,

where the last equality holds since the ψi, ψj were chosen to be real-valued. In

particular, we have

sup
j

N∑
i=1

‖ψjEE∗ψi‖ = sup
i

N∑
j=1

‖ψjEE∗ψi‖,

so equations (5.10) and (5.11) give

( N∑
j=1

∥∥∥ψjEE∗( N∑
i=1

ψigi

)∥∥∥2

L2(Rn)

)1/2

≤
(

sup
j

N∑
i=1

‖ψjEE∗ψi‖
)( N∑

i=1

‖gi‖2
L2(Rn)

)1/2

;

it therefore suffices to prove

sup
j

N∑
i=1

‖ψjEE∗ψi‖ . R. (5.12)

Given any j ∈ {1, · · · , N}, the TT ∗ method gives

‖ψjEE∗ψj‖ = ‖(ψjE)(ψjE)∗‖ = ‖ψjE‖2.

But by Plancherel’s theorem and the same steps which led to equation (3.25), we

have that for all f ∈ Lp(P n−1, dσ),

‖ψjEf‖L2(Rn) = ‖(ψjEf )̂ ‖L2(Rn) . R1/2‖f‖L2(Pn−1, dσ).

Hence, ‖ψjE‖2 . R, giving ‖ψjEE∗ψj‖ . R.

For i 6= j, we will estimate ‖ψjEE∗ψi‖ using Schur’s test. As such, we must

identify the integral kernel for the operator ψjEE
∗ψi. Given g ∈ S(Rn), noting

that E∗Pn−1 = RPn−1 by equation (3.2), Fubini’s theorem gives

(ψjEE
∗ψig)(x) = ψj(x)

∫
Rn
ψi(y)g(y)

(∫
Pn−1

e−2πi(y−x)·ξ dσ(ξ)
)
dy

=

∫
Rn

[ψj(x)ψi(y)d̂σ(y − x)]g(y) dy,

so ψjEE
∗ψi has integral kernel K(x, y) = ψj(x)ψi(y)d̂σ(y−x). By Theorem 2.44,

we have

|d̂σ(y − x)| . |y − x|−(n−1)/2;
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it follows that for any x ∈ Rn,∫
Rn
|K(x, y)| dy . ψj(x)

∫
Rn
ψi(y)|y − x|−(n−1)/2 dy. (5.13)

By translation invariance, we may assume without loss of generality that xi = 0

and |xj| & (RN)
2

n−1 . Since ψi and ψj are Schwartz, we then have

ψi(y) . (1 + |y|)−(n+1)

and

ψj(x) . (1 + |x− xj|)−(n+1).

Equation (5.13) therefore gives∫
Rn
|K(x, y)| dy . (1 + |x− xj|)−(n+1)

∫
Rn

(1 + |y|)−(n+1)|y − x|−(n−1)/2 dy. (5.14)

We estimate this integral by the “divide and conquer” approach, treating sepa-

rately the cases when x is close to the origin (relative to xj), and when x is far

from the origin.

First, suppose |x| < |xj|/2. Then, |x− xj| > |xj|/2, so (5.14) gives∫
Rn
|K(x, y)| dy . |xj|−(n+1)

∫
Rn

(1 + |y|)−(n+1)|y − x|−(n−1)/2 dy.

But (1 + |y|)−(n+1) is bounded above by 1, so∫
|y−x|<1

(1 + |y|)−(n+1)|y − x|−(n−1)/2 dy ≤
∫
|y−x|<1

|y − x|−(n−1)/2 dy

∼ 1.

We also have∫
|y−x|≥1

(1 + |y|)−(n+1)|y − x|−(n−1)/2 dy ≤
∫
Rn

(1 + |y|)−(n+1) dy

∼ 1,

and it follows that if |x| < |xj|/2, then∫
Rn
|K(x, y)| dy . |xj|−(n+1). (5.15)

Next, suppose |x| ≥ |xj|/2. Then, since (1 + |x− xj|)−(n+1) is bounded above by

1, equation (5.14) gives∫
Rn
|K(x, y)| dy .

∫
Rn

(1 + |y|)−(n+1)|y − x|−(n−1)/2 dy.
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Clearly, we have∫
|y−x|≥|xj |/4

(1 + |y|)−(n+1)|y − x|−(n−1)/2 dy . |xj|−(n−1)/2

∫
Rn

(1 + |y|)−(n+1) dy

∼ |xj|−(n−1)/2.

Moreover, if |y − x| < |xj|/4, then |y| > |xj|/4, hence∫
|y−x|<|xj |/4

(1 + |y|)−(n+1)|y − x|−
(n−1)

2 dy . |xj|−(n+1)

∫
|y−x|<|xj |/4

|y − x|−
(n−1)

2 dy

∼ |xj|−(n+1)/2.

It follows that if |x| ≥ |xj|/2, then∫
Rn
|K(x, y)| dy . |xj|−(n−1)/2 + |xj|−(n+1)/2

. |xj|−(n−1)/2. (5.16)

Comparing equations (5.15) and (5.16), we see that

sup
x∈Rn

∫
Rn
|K(x, y)| dy . |xj|−(n−1)/2

. (RN)−1,

where we have used the assumption |xj| & (RN)
2

n−1 . By symmetry, we also have

sup
y∈Rn

∫
Rn
|K(x, y)| dx . (RN)−1,

and it follows by Schur’s test that

‖ψjEE∗ψi‖ . (RN)−1.

Combining this with the estimate ‖ψjEE∗ψj‖ . R, we find that

N∑
i=1

‖ψjEE∗ψi‖ . R + (N − 1)(RN)−1 . R,

which proves equation (5.12) since j ∈ {1, · · · , N} was arbitrary.

We can therefore bootstrap local extension estimates to sparse collections of

balls. Recall that we also require a covering lemma, allowing us to cover a set of

the form {x ∈ Rn : |Ef(x)| ≥ t} by an appropriate family of sparse collections of

balls. The following lemma provides an appropriate covering for sets which are a

union of unit cubes, with the idea being that the uncertainty principle dictates

that the set {x ∈ Rn : |Ef(x)| ≥ t} will not be too different to a union of unit

cubes (since Êf is supported in a cube).
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Lemma 5.7 (Lemma 3.3, [Tao99]). Let A be a union of unit cubes. For any

N ≥ 1, A may be covered by O(N |A|1/N) sparse collections of balls of radius

O(|A|2N ).

Proof. If A is a single unit cube the result is clear. We may therefore assume

without loss of generality that A is a union of at least two unit cubes, in which

case |A| ≥ 2.

Let N ≥ 1. Define the radii Rk for 0 ≤ k ≤ N inductively by R0 = 1 and

Rk+1 = |A|2R2
k, and note that Rk = O(|A|2k). Define

A1 = {x ∈ A : |A ∩B(x,R0)| ≤ |A|1/N},

and for 1 < k ≤ N , define

Ak = {x ∈ A : x /∈ Aj for j < k, and |A ∩B(x,Rk)| ≤ |A|k/N}.

Since A =
⋃N
k=1Ak, it suffices to prove that each Ak can be covered by O(|A|1/N)

sparse collections of balls of radius O(|A|2N ). In fact, we will show that each Ak

can be covered by O(|A|1/N) sparse collections of balls of radius 5Rk−1 (noting

that 5Rk−1 = O(|A|2k−1
) = O(|A|2N )).

Fix 1 ≤ k ≤ N , and let x ∈ Ak. We will first cover the set Ax = Ak ∩B(x,Rk/2)

by O(|A|1/N) balls of radius 5Rk−1. To do so, consider the cover {B(y,Rk−1) :

y ∈ Ax} of the set Ax by Rk−1-balls. By the Vitali covering lemma, we may

extract a countable subset A′x ⊂ Ax such that the balls {B(y,Rk−1) : y ∈ A′x} are

pairwise disjoint, and {B(y, 5Rk−1) : y ∈ A′x} covers Ax. We claim that the set

A′x must have cardinality O(|A|1/N); indeed, given any y ∈ A′x, we have y ∈ Ak,
hence |A∩B(y,Rk−1)| & |A|(k−1)/N by the definition of Ak (using the fact that A

is a union of unit cubes in the case k = 1). We also have y ∈ B(x,Rk/2), hence

B(y,Rk−1) ⊂ B(x,Rk), since the assumption |A| ≥ 2 implies Rk−1 ≤ Rk/2. It

follows that for any distinct y1, · · · , ym ∈ A′x, we have

m|A|(k−1)/N .
m∑
j=1

|A ∩B(yj, Rk−1)| =
∣∣∣A ∩ m⋃

j=1

B(yj, Rk−1)
∣∣∣

≤ |A ∩B(x,Rk)| ≤ |A|k/N ,

hence, m . |A|1/N (where we have used the disjointness of the balls B(yj, Rk−1)

and the definition of Ak). It follows that A′x has cardinality O(|A|1/N), and since

x ∈ Ak was arbitrary, we see that the set Ak ∩ B(x,Rk/2) may be covered by

O(|A|1/N) balls of radius 5Rk−1 for any x ∈ Ak.
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The set Ak may therefore be covered by O(|A|1/N) collections of 5Rk−1-balls

of separation & Rk, where each collection has cardinality O(|A|). Since Rk &

(5Rk−1O(|A|))
2

n−1 , it follows that each of these collections is sparse provided the

implied constant in the definition of sparseness is small enough.

We now have all of the tools necessary to prove the ε-removal theorem. In

what follows, we will have frequent need to consider various superlevel sets, so

we introduce some notation here for convenience:

Notation 5.8. Let f : Rn → C be measurable. Given t > 0, we let ηf (t) denote

the superlevel set

ηf (t) = {x ∈ Rn : |f(x)| ≥ t}.

The distribution function λf (t) as introduced in Section 2.2 is therefore given

by λf (t) = |ηf (t)|.
We will also use the following:

Notation 5.9. Given r > 0, we let Qr = [−r, r]n.

Proof (ε-Removal): Let 2 ≤ p ≤ q ≤ ∞, ε > 0, and suppose that R∗Pn−1(p →
q ; ε) holds. Recall from the discussion following the statement of the theorem

that it suffices to prove

‖Ef‖Lq0,∞(Rn) . ‖f‖Lp(Pn−1, dσ) (5.17)

for all f ∈ Lp(P n−1, dσ), where 1
q0

= 1
q
− 4 log 2

q log(1/εq)
.

Let f ∈ Lp(P n−1, dσ), and assume without loss of generality that ‖f‖Lp(Pn−1, dσ) =

1. We begin by bounding the left-hand side of (5.17) by the Lq0,∞(Rn) norm

of the average |Ef | ∗ χQ1/4
, motivated by the heuristic that the superlevel sets

η|Ef |∗χQ1/4
(t) resemble unions of unit cubes, so Lemma 5.7 will become applicable.

By Fubini’s theorem, we may compute

χ̂Q1/4
(ξ) =

n∏
i=1

sin(πξi/2)

πξi
,

so χ̂Q1/4
∼ 1 on Q3/2. Let ϕ ∈ C∞c (Q3/2) be a bump function with ϕ ≡ 1 on Q1,

and define

ψ :=

ϕ/χ̂Q1/4
on Q3/2 ;

0 on Rn \Q3/2.
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Since ϕ ≡ 1 on P n−1 ⊂ Q1, Fubini’s theorem gives Ef = Ef ∗ ϕ̌. But clearly,

ϕ = χ̂Q1/4
ψ, from which we see by Fourier inversion that ϕ̌ = χQ1/4

∗ ψ̌, hence

Ef = Ef ∗χQ1/4
∗ ψ̌. Young’s convolution inequality for weak Lp spaces therefore

gives ‖Ef‖Lq0,∞(Rn) . ‖|Ef | ∗ χQ1/4
‖Lq0,∞(Rn), so by our normalisation, it suffices

to prove ‖|Ef | ∗χQ1/4
‖Lq0,∞(Rn) . 1. That is, it suffices to prove that for all t > 0,

|η|Ef |∗χQ1/4
(t)|1/q0 . 1

t
. (5.18)

We first note that (5.18) is clear for all t larger than a particular threshold K in-

dependent of f , so we need only consider 0 < t . 1. Indeed, Young’s convolution

inequality and the trivial estimate give

‖|Ef | ∗ χQ1/4
‖L∞(Rn) ≤ ‖Ef‖L∞(Rn)‖χQ1/4

‖L1(Rn) . ‖f‖L1(Pn−1, dσ),

and since P n−1 is compact, Hölder’s inequality combined with our normalisa-

tion ‖f‖Lp(Pn−1, dσ) = 1 implies ‖f‖L1(Pn−1, dσ) . 1. It follows that ‖|Ef | ∗
χQ1/4

‖L∞(Rn) ≤ K for some constant K independent of f , from which we see

that |η|Ef |∗χQ1/4
(t)| = 0 for t > K, in which case (5.18) clearly holds. We may

therefore assume without loss of generality that 0 < t ≤ K.

Given t > 0, let At be the union of all unit cubes of the form z + Q1/2 for some

z ∈ Zn which have nonempty intersection with the superlevel set η|Ef |∗χQ1/4
(t).

Clearly, η|Ef |∗χQ1/4
(t) ⊂ At, hence |η|Ef |∗χQ1/4

(t)|1/q0 ≤ |At|1/q0 , so it now suffices

to prove

|At|1/q0 .
1

t
(5.19)

for all 0 < t ≤ K. Since At is a union of unit cubes, for any N ≥ 1, Lemma 5.7

allows us to cover At by sparse collections C1, · · · , Cm of balls of radius O(|At|2
N

),

where m = O(N |At|1/N). Since these collections cover At, we have

At =
m⋃
i=1

(
At ∩

⋃
B∈Ci

B
)
,

hence,

|At| ≤
m∑
i=1

∣∣∣At ∩ ⋃
B∈Ci

B
∣∣∣. (5.20)

Now, if x ∈ At, then by definition, there exists z ∈ Zn and y ∈ Rn such that

x, y ∈ z +Q1/2, and |Ef | ∗ χQ1/4
(y) ≥ t. It follows that |x− y| ≤

√
n and hence,
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|Ef |∗χQ1/4+
√
n
(x) ≥ |Ef |∗χQ1/4

(y) ≥ t. We therefore have At ⊂ η|Ef |∗χQ1/4+
√
n
(t),

and in particular, equation (5.20) gives

|At| ≤
m∑
i=1

∣∣∣At ∩ ⋃
B∈Ci

B
∣∣∣ ≤ m∑

i=1

∣∣∣η|Ef |∗χQ1/4+
√
n
(t) ∩

⋃
B∈Ci

B
∣∣∣

=
m∑
i=1

|η(|Ef |∗χQ1/4+
√
n

)χ⋃
B∈Ci B

(t)|

≤ 1

tq

m∑
i=1

‖|Ef | ∗ χQ1/4+
√
n
‖qLq(⋃B∈Ci B), (5.21)

where the last line follows by Chebyshev’s inequality. But for all x ∈
⋃
B∈Ci B,

we have

|Ef | ∗ χQ1/4+
√
n
(x) = (|Ef |χ⋃

B∈Ci
(B+Q1/4+

√
n)) ∗ χQ1/4+

√
n
(x).

It follows that

‖|Ef | ∗ χQ1/4+
√
n
‖qLq(⋃B∈Ci B) ≤ ‖(|Ef |χ⋃

B∈Ci
(B+Q1/4+

√
n)) ∗ χQ1/4+

√
n
‖qLq(Rn)

. ‖Ef‖qLq(⋃B∈Ci (B+Q1/4+
√
n)), (5.22)

where the last line follows by Young’s convolution inequality. But clearly, B(x,R)+

Q1/4+
√
n ⊂ B(x,R+ 2n) for any ball B(x,R) ⊂ Rn. Letting C̃i denote the collec-

tion of balls obtained by enlarging the radius of each ball in Ci by 2n, it follows

that

‖Ef‖qLq(⋃B∈Ci (B+Q1/4+
√
n)) ≤ ‖Ef‖

q
Lq(

⋃
B∈C̃i

B),

and combining this with (5.21) and (5.22) gives

|At| .
1

tq

m∑
i=1

‖Ef‖qLq(⋃B∈C̃i B). (5.23)

Noting that each of the collections C̃i is also sparse and is comprised of balls of

radius . |At|2
N

+ 2n, Lemma 5.6 and our normalisation give

‖Ef‖qLq(⋃B∈C̃i B) . (|At|2
N

+ 2n)εq. (5.24)

Now, if |At| < 2n, we get |At|1/q0 . 1 ≤ K/t (recalling that 0 < t ≤ K), which

gives the conclusion (5.19). We may therefore assume without loss of generality

that 2n ≤ |At|, in which case (5.24) gives

‖Ef‖qLq(⋃B∈C̃i B) . |At|
εq2N . (5.25)
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Combining (5.23) and (5.25) and recalling that m = O(N |At|1/N), we find that

|At| .
1

tq
N |At|εq2

N+1/N . (5.26)

Setting N = log(1/εq)
2 log 2

, we get εq22N = 1, hence εq2N = 2−N ≤ 1/N . Noting

that |At| ≥ 1, (5.26) then gives |At| . 1
tq
N |At|2/N for our particular choice of N .

Hence, if |At| is finite, we may rearrange to conclude that |At|1/q−2/Nq . N1/q

t
.

Substituting our expression for N , this is equivalent to

|At|
1
q
− 4 log 2
q log(1/εq) .

1

t
, (5.27)

which is the conclusion (5.19). To see that |At| is indeed finite, we note that by

Remark 2.45 and a density argument, Ef(x) decays to 0 as |x| → ∞. It follows

that the superlevel set η|Ef |∗χQ1/4
(t) is bounded, from which it is clear that At

is also bounded, and therefore has finite measure. Our manipulations leading to

(5.27) are therefore justified, and we are done.

The most important feature of Theorem 5.3 is that the threshold of 1
r
<

1
q
− 4 log 2

q log(1/εq)
below which R∗Pn−1(p→ q ; ε) implies R∗Pn−1(p→ r) limits to 1/q as

ε→ 0. This leads to the following simple corollary:

Corollary 5.10. If 2 ≤ p ≤ q ≤ ∞ and R∗Pn−1(p → q ; ε) holds for all ε > 0

sufficiently small, then R∗Pn−1(p→ r) holds for all r > q.

In particular, when combined with Theorem 5.2, Corollary 5.10, yields the

Tomas restriction theorem:

Corollary 5.11. R∗Pn−1(2→ q) holds for all q > 2(n+1)
n−1

.

5.3 Future Directions

It is natural to ask whether the regime of using decoupling to prove a family

of local extension estimates and then applying ε-removal may be used to prove

further global extension estimates for other submanifolds (not necessarily hyper-

surfaces). Indeed, we suspect that whenever one has an `2 decoupling inequality

in Lp for a submanifold S (analogous to Theorem 4.5 for the paraboloid), it may

be possible to use decoupling to prove the local extension estimates R∗S(2→ p ; ε)

for all ε > 0 (analogous to Theorem 5.2), following which one may use ε removal

to obtain the global extension estimates R∗S(2→ q) for all q > p.
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One pertinent possibility is the question of whether one may use the decoupling

theorem for the moment curve (Theorem 4.8) to prove R∗Γn(2→ n(n+ 1) ; ε) for

all ε > 0. Unfortunately, when attempting to emulate our proof of Theorem 5.2,

one encounters some geometric difficulties regarding the possibility of covering a

R−1-neighbourhood of the moment curve by a family of regions of the form θξ,R−k

for a suitable exponent k. Despite this, it is our conviction that with sufficient

insight, our technique may be successfully applied.

There is a wide range of decoupling theorems which have been proven for different

submanifolds in recent years (many of which are discussed in [Tao20a]), so the

possible applications of our techniques are numerous.
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